Desymmetrisation of meso difuryl alcohols, diols and their derivatives: complementary directed and undirected asymmetric dihydroxylation reactions

Robert Hodgson, ${ }^{a}$ Tahir Majid ${ }^{b}$ and Adam Nelson *a
${ }^{a}$ School of Chemistry, University of Leeds, Leeds, UK LS2 9JT
${ }^{b}$ Aventis Pharma US, Route 202-206, Bridgewater, New Jersey 08807, USA

Received (in Cambridge, UK) 22nd May 2002, Accepted 31st May 2002
First published as an Advance Article on the web 27th June 2002

Asymmetric reactions (for example, asymmetric epoxidation and asymmetric dihydroxylation) were examined for the desymmetrisation of the meso substrates 1,1-difuran-2-ylmethanol, N-(1,1-difuran-2-ylmethyl)-4-methylbenzenesulfonamide, (R, S)-1,4-difuran-2-ylbutane-1,4-diol and the derivatives of these compounds. The complex $\mathrm{OsO}_{4} \cdot(S, S)$ -S)-1,2-diphenyl- N, N^{\prime}-bis(2,4,6-trimethylbenzyl)ethane-1,2-diamine was found to be an effective reagent for the desymmetrisation of meso-1,2-bis(3,6-dihydro-3-hydroxy-2H-pyran-2-yl)ethanes and the corresponding di-pmethoxybenzoates by asymmetric dihydroxylation. The stereochemical outcome of this process depends critically on the relative stereochemistry and substitution of the substrate, and can occur anti to, or be directed by, an allylic alcohol or p-methoxybenzoyloxy functional group.

Introduction

The enantioselective desymmetrisation of meso compounds is one of the most powerful strategies for asymmetric synthesis. ${ }^{1}$ This strategy uses a chiral reagent to differentiate between enantiotopic functional groups in the starting material: provided that the discrimination between these groups is sufficiently effective, the products of the reaction may be obtained in excellent yield and with high enantiomeric excess. \dagger

In this paper, we describe some methods for the desymmetrisation of meso difurans (for example $\mathbf{1}$ and 4) and closely related derivatives of these compounds (Scheme 1). At the start of our investigation, we planned to differentiate between the enantiotopic rings of the difurans 1 using a chiral oxidising agent; we envisaged that the enantiomerically enriched products of the reaction, for example $\mathbf{2 b}$, might be of value in the synthesis of pipecolinic acid derivatives 3b. Polyhydroxylated pipecolinic acid derivatives such as $\mathbf{3 b}$ have value as potent and specific inhibitors of glycosidases. ${ }^{3}$ Alternatively, desymmetrisation of the diol 4, or one of its meso derivatives, was expected, after functionalisation, to give enantiomerically enriched functionalised tetrahydropyrans (THPs) 5; these compounds might be intermediates in the synthesis of C-linked glycosyl amino acids ${ }^{4}$ of general structure 6 .

Results and discussion

Synthesis of meso starting materials

The difuryl alcohol ${ }^{5} \mathbf{8}$ and the difuryl sulfonamide $\mathbf{1 0}$ were synthesised by addition of 2-lithiofuran (11), prepared by lithiation of furan, to furfural (7) and its N -tosylimine ${ }^{6}(9)$ respectively (Scheme 2).

Treatment of a solution of the meso $\operatorname{diol}^{7} \mathbf{4}$ in dichloromethane with a 5.0 M solution of tert-butyl hydroperoxide in decane and catalytic vanadyl acetylacetonoate resulted in a

[^0]

4

5

6
Scheme 1
double oxidative ring expansion ${ }^{8}$ to give the insoluble dipyranone 14. The dipyranone 14 was isolated by filtration of the reaction mixture and was obtained as a $75: 25$ mixture of meso and unsymmetrical isomers. We investigated the protection of the bis-hemiacetal $\mathbf{1 4}$ under two different reaction conditions. Treatment of $\mathbf{1 4}$ with trimethyl orthoformate and $20 \mathrm{~mol} \%$ boron trifluoride in methanol gave the tricycle 15 as a mixture of diastereoisomers; in contrast, the same reaction in dichloromethane gave the required diacetals $\mathbf{1 2}$ as a $75: 25$ mixture of anomers in $>98 \%$ yield, from which the required meso diastereoisomer could be crystallised in 52% yield (Scheme 3).
Luche reduction ${ }^{9}$ of the dipyranone 12 (75:25 mixture of anomers) gave the diol $\mathbf{1 3}$ from which the required isomer

Scheme 2

Scheme 3

12

14

13

meso- $\mathbf{1 3}$ was obtained in 41% yield by crystallisation. In a separate experiment, Luche reduction of the dipyranone meso$\mathbf{1 2}$ gave the diol meso- $\mathbf{1 3}$ in $>98 \%$ yield. In the context of twodirectional stereoselective functionalisation, ${ }^{10}$ the isolation of meso-13 in $>98 \%$ yield as a $>99: 1$ mixture of diastereoisomers must reflect a >99.5 : 0.5 diastereo- and regioselectivity for the reduction of each of the enones.

In an attempt to reverse the sense of diastereoselectivity of the reduction $\mathbf{1 2} \longrightarrow \mathbf{1 3}$, we screened a range of reducing agents in the reduction of meso-12; for example, CBS reduction $\left(\mathrm{BH}_{3}\right.$, $10 \mathrm{~mol} \% \mathrm{16}$), conditions known to favour 1,2-reduction of enones, ${ }^{11}$ gave the same meso diol 13 in 94% yield as well as the unsymmetrical hydroxyketone $\mathbf{1 7}$ (4% yield). Clearly the stereochemical control exerted by the substrate $\mathbf{1 2}$ overpowers the reagent control offered by the chiral catalyst. The enantiomeric excess of $\mathbf{1 7}$ was not determined. The Luche reduction of ketoesters similar to $\mathbf{1 8}$ is known to proceed with complementary (syn) stereoselectivity to the reductions of enones such
as 12. ${ }^{12}$ Unfortunately, the dipyrandione 18, synthesised by Jones' oxidation of $\mathbf{1 4},{ }^{12}$ was extremely insoluble in most organic solvents, and attempted Luche reduction followed by in situ acetylation ($\mathrm{Ac}_{2} \mathrm{O}$, pyridine) gave mainly the dienol diacetate 19 (94% yield). In any case, 18 existed as a mixture of keto and enol tautomers, indicating that the valuable 1,4-syn stereochemical relationship present in $\mathbf{1 4}$ had not been preserved.

16

18

17

19

The diol meso- $\mathbf{1 3}$ was converted into other meso substrates for the desymmetrisation studies (Scheme 4). Most simply,

meso-13 was protected as its p-methoxybenzoyl diester 20. In the other diastereomeric series, the diesters 21 and 22 were prepared by reaction of the corresponding dimesylate with caesium acetate $(\rightarrow \mathbf{2 1})$ and caesium p-methoxybenzoate $(\longrightarrow \mathbf{2 2}) .{ }^{13}$ Hydrolysis of the diacetate 21 gave the diol 23 which was silylated to give the tert-butyldimethylsilyl ether 24 . The diol $\mathbf{2 3}$ was also prepared from meso- $\mathbf{1 3}$ in 36% yield by treatment of its dimesylate with potassium superoxide and 18-crown-6 in DMSO. ${ }^{14}$

Table 1 Desymmetrisation of the difurans 8 and 10

Entry	Starting material	Reaction conditions	Product	Yield (\%)
1a	8	m-CPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$	25^{a}	48
1 b	8	NBS, NaOAc, THF- $\mathrm{H}_{2} \mathrm{O}$	25^{a}	44
1 c	8	Oxone, NaHCO_{3}, acetone $-\mathrm{H}_{2} \mathrm{O}$	$-{ }^{\text {b }}$	c
1 d	8	(+)-DET ${ }^{f}, 3 \AA$ molecular sieves, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Ti}\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{4}$, ${ }^{\text {t }} \mathrm{BuOOH}$	$-^{d}$	-
2a	10	m-CPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$	$26{ }^{\text {e }}$	29
2 b	10	NBS, NaOAc , THF- $\mathrm{H}_{2} \mathrm{O}$	27	50
2c	10	(+)-DET, $3 \AA$ molecular sieves, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Ti}\left(\mathrm{O}^{\mathrm{i} P r}\right)_{4}$, ${ }^{\mathrm{t}} \mathrm{BuOOH}$	$-^{d}$	c

${ }^{a}$ Isolated as a $75: 25$ mixture of anomers. ${ }^{b}$ Analysis of the crude reaction mixture by $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR showed that only starting material was present. ${ }^{c}$ A quantitative yield of starting material was recovered. ${ }^{d}$ Analysis of the crude reaction mixture by $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR showed that only the starting material and diethyl tartrate were present. ${ }^{e}$ Analysis of the crude reaction mixture by $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR showed it consisted of a 47 : 53 mixture of the pyranone 26 and the pyridine $27 .{ }^{f}$ DET = diethyl tartrate.

Investigations into desymmetrisations by Sharpless asymmetric oxidation

At the outset of our synthetic studies, we investigated the desymmetrisation of the difurans $\mathbf{8}$ and $\mathbf{1 0}$ (Scheme 5); our

Scheme 5

results are summarised in Table 1. In the first instance, the difuryl alcohol $\mathbf{8}$ and the difuryl sulfonamide $\mathbf{1 0}$ were reacted with achiral oxidants (entries $1 \mathrm{a}-\mathrm{c}$ and $2 \mathrm{a}-\mathrm{b}$, Table 1). Treatment of $\mathbf{8}$ and $\mathbf{1 0}$ with m-CPBA gave the expected products $\mathbf{2 5}$ and 26, albeit in poor yield. The sensitivity of the piperidinone product 26 to the reaction conditions was revealed by the observation of the unexpected byproduct 27 (entries 1a and 2a, Table 1). In an attempt to optimise the yield of the reaction, $\mathbf{8}$ and $\mathbf{1 0}$ were reacted under alternative reaction conditions using N -bromosuccinimide as the oxidant: this modification did not improve the yield of the pyranone 25 and, in fact, the yield of the unexpected byproduct 27 was increased. We account for the formation of the pyridine 27 by aromatisation of the piperidinone 26 to give the pyridinium derivative 28, a compound which is analogous to the acylated DMAP complexes ${ }^{15}$ which are intermediates in many acylation reactions; intermolecular $N \rightarrow O$ transfer of the tolylsulfonyl group would give the aryl tosylate 27. Recently, a related ring expansion has been reported in which 2-acylfurans are converted into the corresponding 3-hydroxypyridines. ${ }^{5}$

An important extension of the Sharpless asymmetric epoxidation has been its exploitation in the kinetic resolution of α-(2-furyl) alcohols ${ }^{16}$ and α-(2-furyl) N-tosylsulfonamides ${ }^{17}$ by oxidative ring expansion. However, attempted desymmetrisation of the difurans $\mathbf{8}$ and $\mathbf{1 0}$ under conditions which have previously been used for similar oxidative ring expansions was
not successful; some representative experiments are shown in Table 1 (entries 1 d and 2c).
An alternative strategy was to delay the key desymmetrisation step to a later stage, again using the Sharpless asymmetric epoxidation reaction to induce asymmetry (Scheme 6). This

13,75\%

29, 14\%

Scheme 6

approach has previously been exploited in the desymmetrisation of complex meso bis-allylic alcohols. ${ }^{18}$ Accordingly, a 75 : 25 mixture of meso and unsymmetrical diols $\mathbf{1 3}$ was reacted under standard Sharpless asymmetric epoxidation conditions (Scheme 6). ${ }^{19}$ After 9 days reaction, a 14% yield of the enone 29 was isolated as a single anomer together with 75% recovered starting material (87:13 mixture of anomers). The hydroxy ketone $\mathbf{2 9}$ was, however, shown to have $>90 \%$ ee by conversion into the corresponding (R)-Mosher's ester 30. The sluggish nature of the oxidation reaction was not surprising in view of earlier studies involving cyclohexenols, $\$$ particularly since 13's hydroxy groups are conformationally locked in pseudo equatorial positions and are unable to direct the epoxidation reagent. The enantio- and diastereoselectivity of the process 13 $\rightarrow \mathbf{2 9}$ are, however, remarkable. The relative configurations of the anomeric centres completely control which ring is oxidised: meso- $\mathbf{1 3}$ was essentially inert to the reaction conditions and the ring of the unsymmetrical diastereoisomer with the same relative stereochemistry as meso- $\mathbf{1 3}$ did not react either. This reaction is a kinetic resolution of the unsymmetrical diastereoisomer $\mathbf{1 3}$ and, in fact, the reaction must be highly enantioselective: one of the enantiomers is much more reactive, and is

[^1]Table 2 Desymmetrisation of the dienes meso-13 and 20-24 by asymmetric dihydroxylation

Entry	Starting material	Conditions ${ }^{\text {a }}$	Reaction time/days	Product(s)	Diastereomer ratio ${ }^{b}$ anti : syn	Yield (\%)	Ee (\%)
1	20	AD-mix β, ${ }^{\text {t }} \mathrm{BuOH}-\mathrm{H}_{2} \mathrm{O}, \mathrm{MeSO}_{2} \mathrm{NH}_{2}$	6	32a-b	$60: 40$	$12^{\text {c }}\left(31{ }^{\text {d }}\right.$)	${ }^{f}$
2a	20	$\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}, 1.0 \mathrm{~mol} \% \mathrm{OsCl}_{3}, 2.0 \mathrm{~mol} \% \mathbf{3 6}$, $\mathrm{MeSO}_{2} \mathrm{NH}_{2},{ }^{\mathrm{t}} \mathrm{BuOH}-\mathrm{H}_{2} \mathrm{O}$	7	32a, ${ }^{e}$ 32b ${ }^{f}$	85:15	$17^{c}\left(40^{d}\right)$	38^{g}
2b	22		6	$\mathbf{3 4 a - b}{ }^{f}$	$75: 25$	$16^{c}\left(57{ }^{\text {d }}\right.$)	${ }^{f}$
3a	20	OsO ${ }_{4}, 37, \mathrm{CH}_{2} \mathrm{Cl}_{2}$	4	ent-329 ${ }^{e}$	>95:5	75^{h}	50^{g}
3 b	20	$\mathrm{OsO}_{4}, 37, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20 \longrightarrow 25^{\circ} \mathrm{C}$	2	ent-32a ${ }^{e}$	>95:5	84^{h}	$60^{g i}$
3 c	22	$\mathrm{OsO}_{4}, 37, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20 \longrightarrow 25^{\circ} \mathrm{C}$	6	34b	<5:95	34 (71 ${ }^{\text {d }}$)	40^{i}
4	21	$\mathrm{OsO}_{4}, 37, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20 \longrightarrow 25^{\circ} \mathrm{C}$	6	23	-	60	j
5	24	$\mathrm{OsO}_{4}, 37, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20 \longrightarrow 25^{\circ} \mathrm{C}$	6	k	-	- ${ }^{1 / 2}$	-
6a	meso-13	$\text { 1. } \mathrm{OsO}_{4}, 37, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20 \longrightarrow 25^{\circ} \mathrm{C} ; 2 . \mathrm{Ac}_{2} \mathrm{O} \text {, }$ pyridine	4	39	-	$40^{h, l}\left(73^{m}\right)$	${ }^{j}$
6b	23	$\text { 1. } \mathrm{OsO}_{4}, 37, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20 \longrightarrow 25^{\circ} \mathrm{C} ; 2 . \mathrm{Ac}_{2} \mathrm{O} \text {, }$ pyridine	6	40	$<5: 95$	39 (87 ${ }^{\text {d }}$)	93^{i}

${ }^{a}$ Reactions conducted at room temperature unless otherwise indicated. ${ }^{b}$ Crude ratio determined by $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy. ${ }^{c}$ Combined yield of mixture of diastereoisomers. ${ }^{d}$ Yield based on recovered starting material. ${ }^{e}$ The absolute configuration of $\mathbf{3 2 a}$ was deduced by comparing the $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of its (R) - and (S)-Mosher diesters with those of the optically active diol 41. Absolute configuration and enantiomeric excess not determined. ${ }^{g}$ Determined by conversion into the corresponding (R)-Mosher's esters. ${ }^{h}$ Yield of single compound. ${ }^{i}$ Determined by analytical chiral HPLC. ${ }^{j}$ Product(s) not chiral. ${ }^{k}$ No reaction. ${ }^{l} \mathbf{3 8}$ was isolated in 45% yield. ${ }^{m}$ Yield based on isolated acetylated starting material $\mathbf{3 8}$.

Scheme 7
almost completely consumed in its conversion into the hydroxy ketone 29 (which had $>90 \%$ ee). Similar oxidations have been observed in other conformationally locked systems, ${ }^{21}$ though the enantioselectivity of this process has not been previously studied.

Desymmetrisation by asymmetric dihydroxylation

Initial investigations focussed on the desymmetrisation of the meso diester 20 by Sharpless asymmetric dihydroxylation (Scheme 7). Protected cyclohexanols, whose kinetic resolutions raise similar issues of diastereo- and enantioselectivity, have proved to be challenging substrates for AD catalysts. ${ }^{22}$ Asymmetric dihydroxylation of $\mathbf{2 0}$ using AD-mix β was extremely sluggish, and gave a poor yield of the corresponding diols 32 as a $60: 40$ mixture of diastereoisomers (entry 1, Table 2).

Results obtained using the ligand 36, which was designed by Corey specifically for the asymmetric dihydroxylation of allylic p-methoxybenzoates, ${ }^{23}$ were barely more promising (entries $2 \mathrm{a}-$ b): although the dihydroxylations of $\mathbf{2 0}$ and $\mathbf{2 2}$ were reasonably anti diastereoselective, the yield and enantioselectivity of these processes were poor. In each case, dihydroxylation occurred predominantly anti to the p-methoxybenzoyloxy group, regardless of whether it adopted a pseudo-equatorial (as in 20) or a psuedo-axial orientation (as in 22).

36
The most promising ligand for the dihydroxylation of the meso-bis(allylic- p-methoxybenzoate) $\mathbf{2 0}$ was the C_{2}-symmetric diamine $\left.{ }^{24}(S, S) S\right)-37$ which was also introduced by Corey (entries 3a-b, Table 2). ${ }^{25}$ Hence, treatment of 20 with $\mathrm{OsO}_{4} \cdot 37$ led to complete consumption of the starting material and gave the desymmetrised diol ent-32a as a single diastereoisomer in
75% yield with 50% ee. The yield and enantioselectivity of the process were improved by performing the reaction at $-20^{\circ} \mathrm{C}$; under these reaction conditions, the diol ent-32a was obtained in 84% yield with 60% ee. The improvement in yield may stem from suppression of competitive aminolysis of the ester (see the reaction of the diacetate 21, entry 4, Table 2).

37

The desymmetrisation of the diastereomeric compound 22, with its pseudo-axial p-methoxybenzoates, was also studied (entry 3c, Table 2). Treatment of $\mathbf{2 2}$ with $\mathrm{OsO}_{4} \cdot \mathbf{3 7}$ was syn selective ($\mathbf{3 4 b}: \mathbf{3 4 a}>95: 5$), and gave the diol $\mathbf{3 4 b}$ in 71% yield based on recovered starting material. The relative stereochemistry of $\mathbf{3 4 b}$ was determined by comparison of its ${ }^{1} \mathrm{H}$ NMR spectrum with similar model compounds of known configuration. ${ }^{26}$ Other Lewis basic groups have been shown to direct osmylations by delivery of osmium tetraoxide. ${ }^{27}$ Remarkably, 34b was isolated with 40% ee. The non-innocent role of the p-methoxybenzoyloxy group in the dihydroxylation of $\mathbf{2 2}$ is underlined by the unreactive nature of the corresponding tert-butyldimethylsilyl ether 24 (entry 5).

In an attempt to improve the enantioselectivity of the reaction, the desymmetrisations of the diols meso- $\mathbf{1 3}$ and $\mathbf{2 3}$ were investigated (entries $6 a$ and b, Table 2). The dihydroxylation of similar compounds which, like 23, have pseudo-axial allylic hydroxy groups can be controlled by delivery ${ }^{28}$ of OsO_{4}. TMEDA to the double bond. ${ }^{7}$ Similarly, the dihydroxylation of 23 with $\mathrm{OsO}_{4} \cdot 37$ was highly $s y n$ selective, and gave, after peracetylation, the tetraacetate $\mathbf{4 0}$ with 93% ee (87% yield based on recovered starting material). Reaction of the diol meso- $\mathbf{1 3}$ with one equivalent of $\mathrm{OsO}_{4} \cdot 37$ gave, after acetylation, the doubly dihydroxylated meso product 39 (40% yield) and the acetylated starting material 38 (45% yield). In view of the reactions of similar allylic alcohols with $\mathrm{OsO}_{4} \cdot$ TMEDA complex, ${ }^{7}$ it is not surprising that this dihydroxylation was not directed by the pseudoequatorial hydroxy group; the fact the second of the dihydroxylations leading to 39 was faster than the first reflected in the isolation of similar yields of $\mathbf{3 8}$ and $\mathbf{3 9}$, but none of the desymmetrised product - is, however, remarkable.

Determination and rationalisation of the sense of enantiostereoselectivity of desymmetrisations by asymmetric dihydroxylation

The enantiomeric excess of the diol ent-32a was determined in two independent ways. The diol ent-32a was converted into the corresponding (S)-Mosher's esters by acylation with (R)- α -methoxy- α-(trifluoromethyl)phenylacetyl chloride (R)-46, ${ }^{29}$

Table 3 Chemical shifts of protons in the Mosher's diesters 42-45

Compound	$\delta, 2-\mathrm{H}$	$\delta, 3-\mathrm{H}$	$\delta, 4-\mathrm{H}$	$\delta, 5-\mathrm{H}$	$\delta, 6-\mathrm{H}$
$\mathbf{4 2}$	3.83	5.38	5.85	5.39	4.65
$\mathbf{4 3}$	3.88	5.33	5.88	5.48	4.85
$\mathbf{4 4}$	3.86	5.28	5.89	5.48	4.79
$\mathbf{4 5}$	3.86	5.37	5.86	5.38	4.60

46

47
and the ratio of the products $\mathbf{4 4} \mathbf{4 5}$ was determined by HPLC (Scheme 8). Alternatively, the enantiomeric excess of the diacetate 47, synthesised by acetylation of ent-32a ($>98 \%$ yield) could be determined directly by chiral analytical HPLC. The absolute configuration of a sample of ent-32a (which had 60% ee) was determined by comparing the $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of the Mosher's esters 44 and 45 with the (R)and (S)-Mosher's esters (42 and 43 respectively) prepared from the known $\operatorname{diol}^{26} \mathbf{4 1}$. Careful comparison of the chemical shifts of the protons in the acylated rings of these compounds revealed the pairs of Mosher's esters which had the same relative stereochemistry: $\mathbf{4 2}$ and $\mathbf{4 5}$ had the same relative stereochemistry as each other, as did the esters 43 and 44 (see Table 3).

The enantiomeric excess of the tetraacetate $\mathbf{4 0}$ was also determined by chiral HPLC, but its absolute stereochemistry was harder to deduce. The kinetic resolution (Scheme 9) of the alcohol 48 was expected to probe similar issues of stereoselectivity to those raised in the desymmetrisation of $\mathbf{2 3}$ (entry 6 b , Table 2): the absolute and relative stereochemistry of each of the enantiomers of $\mathbf{4 8}$ are the same as those found in each of the rings of the meso diol 23. In practise, the reaction of the racemic alcohol 48 with the complex $\mathrm{OsO}_{4} \cdot 37$ was, like the desymmetrisation of 23, a rather sluggish reaction. Furthermore, the enantiomers of $\mathbf{4 8}$ were, like the enantiotopic rings of 23, efficiently differentiated by the chiral reagent and the relative stereochemistry of the products was the same: the kinetic resolution was highly enantioselective giving, after acetylation, the triacetate $\mathbf{5 0}\left\{[a]_{\mathrm{D}}^{20}-25.0\left(c 0.12\right.\right.$ in $\left.\left.\mathrm{CHCl}_{3}\right)\right\}$ in which the reagent had been delivered to same face of the reacting alkene as the allylic hydroxy group (Scheme 9). The triacetate $\mathbf{5 0}$ was the enantiomer of a sample of known absolute configuration $\left\{\right.$ which had $[a]_{\mathrm{D}}^{20}+30.0\left(c 0.44\right.$ in $\left.\mathrm{CHCl}_{3}\right),>95 \%$ ee\}. ${ }^{26}$ We propose, therefore, that the sense of the asymmetry induced in the desymmetrisation $\mathbf{2 3} \rightarrow \mathbf{3 5 b}$ is the same (as drawn) as that observed in the kinetic resolution of 48

The diastereoselectivity of the desymmetrisation of $\mathbf{2 0}$ (\rightarrow ent-32a; entry 3b, Table 2) by the complex $\mathrm{OsO}_{4} \cdot 37$ concurs with previous investigations into the stereoselectivity of osmoylation of allylic alcohol derivatives, ${ }^{30}$ and this natural selectivity may be reinforced by the presence of an axial methoxy group. Houk ${ }^{31}$ and Corey ${ }^{32}$ have proposed models to explain the enantioselectivity of dihydroxylation reactions involving chiral amine-osmium tetraoxide complexes. The enantioselectivity of the dihydroxylation $\mathbf{2 0} \rightarrow$ ent-32a may be explained in terms of Houk's model in which the equatorial oxygens attack the alkene, and the two mesityl groups ($\mathrm{Ar}^{\prime}=$ mesityl) relay chiral information to the substrate (Fig. 1). The desymmetrisation of $\mathbf{2 3}(\rightarrow \mathbf{3 5 b}$; entry 6b, Table 2), like the reactions of similar compounds with $\mathrm{OsO}_{4} \cdot$ TMEDA, ${ }^{7,26}$ is syn selective, and it is probable that the complex $\mathrm{OsO}_{4} \cdot 37$ is delivered to the reacting alkene by hydrogen bonding to the neighbouring hydroxy group (Fig. 2). This effect may further define the transition state for the asymmetric dihydroxylation
(R)

Scheme 9

Fig. 1
reaction, thereby enhancing the transfer of stereochemical information between the reactants. We believe that this reaction is the first example of a directed asymmetric dihydroxylation.

Fig. 2

Conclusions

The complex $\mathrm{OsO}_{4} \cdot 37$ was found to be an effective reagent for the enantioselective desymmetrisation of meso highly functionalised di-DHPs, and the stereochemical outcome of the dihydroxylation process depended critically on the stereochemistry and substitution of the starting material. For example, the di-DHP 20, with its pseudo equatorial p-methoxybenzoyloxy groups was converted into the diol ent-32a (60% ee) in which dihydroxylation had occurred anti to the ester groups. In contrast, the asymmetric dihydroxylation of the meso diol $\mathbf{2 3}$ was directed by one of the enantiotopic pseudo axial hydroxy groups to give, after peracetylation, the tetraacetate $\mathbf{4 0}$ in 93% ee.

Experimental

General methods have been described previously. ${ }^{26}$ Preparative and analytical HPLC were conducted on a Gynkotek HPLC system with diode array detection; unless otherwise stated, the column oven was set at $24{ }^{\circ} \mathrm{C}$. Econosil columns (silica particle size: $10 \mu \mathrm{~m}$) were used for preparative ($22 \times 250 \mathrm{~mm}$) and analytical $(4.6 \times 250 \mathrm{~mm})$ work, and Chiracel OD column
$(4.6 \times 250 \mathrm{~mm})$ was used for chiral analytical HPLC. Microanalyses were carried out by staff of the Department of Chemistry using a Carlo Erba 1106 automatic analyser.

1,1-Difuran-2-ylmethanol 8

Furan ($2.61 \mathrm{ml}, 36.6 \mathrm{mmol}$) and THF (60 ml) were stirred at $0{ }^{\circ} \mathrm{C}$ under N_{2} and n-butyllithium $(22.9 \mathrm{ml}$ of a 1.6 mol solution in hexanes, 36.6 mmol) was slowly added over 10 min , and the reaction was stirred for 1 h at $0^{\circ} \mathrm{C}$, added slowly by cannulation to a stirred solution of furfural $(2.52 \mathrm{ml}, 30.5 \mathrm{mmol})$ in THF $(50 \mathrm{ml})$ at $-78{ }^{\circ} \mathrm{C}$, under N_{2}. The reaction was stirred for an additional 1 h before warming to room temperature. The reaction mixture was quenched with saturated aqueous ammonium chloride solution (100 ml), the layers were separated and the aqueous layer was extracted with ethyl acetate $(3 \times 75 \mathrm{ml})$. The combined organic extracts were washed with brine $(50 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the alcohol ${ }^{5} \mathbf{8}(4.82 \mathrm{~g}, 96 \%)$ as a pale yellow oil, $R_{\mathrm{f}} 0.20(20: 80$ EtOAc-petrol) (Found: C, 66.0; H, 4.75; $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{3}$ requires C, $65.9 ; \mathrm{H}, 4.90 \%$); $v_{\max } / \mathrm{cm}^{-1}$ (film) $3421(\mathrm{O}-\mathrm{H}), 1644,1144$ and $1010 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.42\left(2 \mathrm{H}\right.$, dd, $J 1.6$ and ${ }^{4} J_{\mathrm{HH}} 0.7$, furyl $5-\mathrm{H}), 6.37(2 \mathrm{H}$, dd, $J 3.3$ and 1.6, furyl $4-\mathrm{H}), 6.32(2 \mathrm{H}, \mathrm{dd}$, $J 3.3$ and ${ }^{4} J_{\mathrm{HH}} 0.7$, furyl $\left.3-\mathrm{H}\right), 5.83(1 \mathrm{H}, \mathrm{d}, J 5.5,1-\mathrm{H})$ and 2.63 $(1 \mathrm{H}, \mathrm{d}, J 5.5, \mathrm{OH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 153.6$ (furyl 2-C), 143.0 (furyl 3-C), 110.8 (furyl), 108.1(furyl) and 64.5 (1-C); m / z (EI) $164\left(14 \%, \mathrm{M}^{+}\right), 147(100, \mathrm{M}-\mathrm{OH})$ and $91(19)$.

N-Furan-2-ylmethylene-4-methylbenzenesulfonamide 9

Furfural ($6.03 \mathrm{ml}, 72.9 \mathrm{mmol}$), tetraethyl orthosilicate (17.22 $\mathrm{ml}, 77.0 \mathrm{mmol})$ and toluene- p-sulfonamide $(12.46 \mathrm{~g}, 72.9 \mathrm{mmol})$ were heated under N_{2} for 30 min at $170{ }^{\circ} \mathrm{C}$, and then ethanol was removed by distillation. After 6 h the reaction mixture was allowed to cool to room temperature, dissolved in warm ethyl acetate $(210 \mathrm{ml})$, petrol $(700 \mathrm{ml})$ added, the solution was left for 24 h and the solid residue was recrystallized from EtOAchexane to give the sulfonamide $9(10.77 \mathrm{~g}, 59 \%)$ as light yellow needles, $\mathrm{mp} 100.7-102.8^{\circ} \mathrm{C}$ (from EtOAc-hexane); $R_{\mathrm{f}} 0.51$ ($1: 1$ EtOAc-petrol) (Found: C, 57.8; H, 4.40; N, 5.4 and S, 12.8; $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}$ requires $\mathrm{C}, 57.8 ; \mathrm{H}, 5.60$ and $\mathrm{S}, 12.9 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $\left(\mathrm{CHCl}_{3}\right.$ solution) $1651,1609(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}), 1541,1315,1290$, 1155 and $1146 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.82(1 \mathrm{H}, \mathrm{s}, \mathrm{N}=\mathrm{CH}), 7.88$ $(2 \mathrm{H}, \mathrm{d}, J 8.0,2-\mathrm{H}$ and $6-\mathrm{H}), 7.75\left(1 \mathrm{H}\right.$, dd, $J 1.7$ and ${ }^{4} J_{\mathrm{HH}} 0.9$, furyl $5-\mathrm{H}), 7.34(2 \mathrm{H}, \mathrm{d}, J 8.0,3-\mathrm{H}$ and $5-\mathrm{H}), 7.33(1 \mathrm{H}, \mathrm{dd}, J 4.0$ and ${ }^{4} J_{\mathrm{HH}} 0.9$, furyl $\left.3-\mathrm{H}\right), 6.65(1 \mathrm{H}$, dd, $J 4.0$ and 1.7 , furyl $4-\mathrm{H})$, $2.43(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 156.0,150.1,145.0$, $130.2,128.5,114.1$ (furyl 4-C) and $22.1 ; \mathrm{m} / \mathrm{z}$ (EI) $249\left(6 \%, \mathrm{M}^{+}\right)$, $155\left(23, \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}{ }^{+}\right), 91\left(100, \mathrm{C}_{7} \mathrm{H}_{7}^{+}\right)$and $39\left(47, \mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}\right)$.

\boldsymbol{N}-(1,1-Difuran-2-ylmethyl)-4-methylbenzenesulfonamide 10

n-Butyllithium $(20.5 \mathrm{ml}$ of a 1.6 mol solution in hexanes, 32.8 $\mathrm{mmol})$ was slowly added to a stirred solution of furan $(2.20 \mathrm{ml}$, $30.3 \mathrm{mmol})$ in THF $(50 \mathrm{ml})$ at $-5^{\circ} \mathrm{C}$ over 10 min . This reaction mixture was stirred for 1 h at $-5^{\circ} \mathrm{C}$, and then added slowly by cannulation to a stirred solution of sulfonamide $9(6.28 \mathrm{~g}$, $25.3 \mathrm{mmol})$ in THF $(60 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h , warmed slowly to room temperature, and quenched with saturated aqueous ammonium chloride solution $(100 \mathrm{ml})$, the layers separated and the aqueous layer was extracted with ethyl acetate $(4 \times 100 \mathrm{ml})$. The combined organic extracts were washed with brine (50 ml), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product which was purified by recrystallization from $\mathrm{EtOAc}-$ hexane to give the difurylsulfonamide $\mathbf{1 0}(7.27 \mathrm{~g}, 91 \%)$ as light brown fine needles, $\mathrm{mp} 175.4-176.9$ (from EtOAc-hexane); $R_{\mathrm{f}} 0.72$ (1:1 EtOAc-petrol) (Found: C, 60.4; H, 4.80; N 4.45 and S, 10.1; $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 60.5 ; \mathrm{H}, 4.75 ; \mathrm{N}, 4.4$ and $\mathrm{S}, 10.1 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right.$ solution) $3401(\mathrm{~N}-\mathrm{H}), 1656,1651,1634$, 1328,1150 and $1074 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.61(2 \mathrm{H}, \mathrm{dd}, J 8.4$
and ${ }^{4} J_{\mathrm{HH}} 0.5,2-\mathrm{H}$ and $\left.6-\mathrm{H}\right), 7.25\left(2 \mathrm{H}, \mathrm{dd}, J 1.9\right.$ and ${ }^{4} J_{\mathrm{HH}} 1.2$, furyl $5-\mathrm{H}), 7.19\left(2 \mathrm{H}\right.$, dd, $J 8.4$ and ${ }^{4} J_{\mathrm{HH}} 0.5,3-\mathrm{H}$ and $\left.5-\mathrm{H}\right), 6.23$ $(2 \mathrm{H}$, dd, $J 3.3$ and 1.9 , furyl $4-\mathrm{H}), 6.11\left(2 \mathrm{H}\right.$, dd, $J 3.3$ and ${ }^{4} J_{\mathrm{HH}}$ 1.2, furyl $3-\mathrm{H}), 5.72(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{CHN}), 5.21(1 \mathrm{H}, \mathrm{d}, J 8.3$, $\mathrm{NH})$ and $2.39(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 150.5$ (furyl 2-C), 143.1 (furyl 5-C), 129.8 (2-C and 6-C), 127.4 (3-C and 5-C), 110.8 (furyl), 108.7 (furyl), 77.6, $50.0(\mathrm{CHN})$ and 21.9 (Me); m / z (EI) 317 ($8 \%, \mathrm{M}^{+}$), 250 (34), 178 (47), 162 (100), 147 (67) and 91(56).
(2R)-2-\{2-[(2S)-6-Hydroxy-3-oxo-3,6-dihydro-2H-pyran-2-yl]-ethyl\}-6-hydroxy-3,6-dihydro-2H-pyran-3-one 14
tert-Butyl hydroperoxide ($6.45 \mathrm{mmol}, 1.29 \mathrm{ml}$ as a 5 M solution in decane) was added slowly to a stirred solution of the diol ${ }^{7,25}$ $4(570 \mathrm{mg}, 2.57 \mathrm{mmol})$ and vanadyl acetylacetonate $(10 \mathrm{mg}$, $37.74 \mu \mathrm{~mol})$ in dichloromethane $(10 \mathrm{ml})$ at room temperature. The reaction mixture was stirred for 7 h , and the heavy suspension filtered and washed with chloroform (5 ml) and dried under reduced pressure to give the dipyranone 14 ($581 \mathrm{mg}, 89 \%$; $75: 25$ mixture of diastereoisomers) as a colourless powder, mp $>260{ }^{\circ} \mathrm{C}$ (from dichloromethane); $R_{\mathrm{f}} 0.35$ (72:28 EtOAcpetrol) (Found: C, $56.5 ; \mathrm{H}, 5.60 ; \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{6}$ requires C, $56.7 ; \mathrm{H}$, $5.55 \%) ; v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right.$ solution) $3360(\mathrm{O}-\mathrm{H}), 2977,2892$, $1674,1455,1194$ and 1072; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{DMSO}_{6}\right) 7.28(2 \mathrm{H}$, $\left.\mathrm{d}, J 7.3, \mathrm{OH}^{\mathrm{min}}\right), 7.05\left(2 \mathrm{H}\right.$, dd, $J 10.3$ and $\left.3.5,5-\mathrm{H}^{\mathrm{maj}}\right), 7.05$ $\left(2 \mathrm{H}, \mathrm{dd}, J 10.2\right.$ and $\left.1.5,5-\mathrm{H}^{\text {min }}\right), 6.96\left(2 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{OH}^{\text {maj }}\right), 6.06$ $\left(2 \mathrm{H}\right.$, dd, $J 10.2$ and $\left.{ }^{4} J_{\mathrm{HH}} 1.4,4-\mathrm{H}^{\mathrm{min}}\right), 6.00(2 \mathrm{H}, \mathrm{d}, J 10.3$, $\left.4-\mathrm{H}^{\text {maj }}\right), 5.56\left(2 \mathrm{H}\right.$, dd, $J 7.3$ and $\left.1.5,6-\mathrm{H}^{\text {min }}\right), 5.48(2 \mathrm{H}$, dd, $J 6.6$ and $\left.3.5,6-\mathrm{H}^{\mathrm{maj}}\right), 4.44\left(2 \mathrm{H}\right.$, dd, $J 7.7$ and $\left.2.8,2-\mathrm{H}^{\mathrm{maj}}\right), 4.15(2 \mathrm{H}$, m , broad, $\left.2-\mathrm{H}^{\text {min }}\right), 1.99-1.91\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right)$ and $1.65-1.59$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{DMSO}-\mathrm{d}_{6}\right) 197.2\left(3-\mathrm{C}^{\text {maj }}\right), 197.9$ $\left(3-C^{\text {min }}\right), 151.8\left(5-\mathrm{C}^{\text {min }}\right), 148.2\left(5-\mathrm{C}^{\text {maj }}\right), 127.8\left(4-\mathrm{C}^{\text {min }}\right), 126.0$ $\left(4-C^{\text {maj }}\right), 90.9\left(6-\mathrm{C}^{\mathrm{min}}\right), 87.0\left(6-\mathrm{C}^{\mathrm{maj}}\right), 77.9\left(2-\mathrm{C}^{\mathrm{min}}\right), 73.3\left(2-\mathrm{C}^{\mathrm{maj}}\right)$, $26.2\left(\mathrm{CH}_{2}{ }^{\mathrm{min}}\right)$ and $25.6\left(\mathrm{CH}_{2}{ }^{\text {maj }}\right) ; m / z(\mathrm{EI}) 236\left(7 \%, \mathrm{M}^{+}-\mathrm{CO}\right)$, 151 (30), 123 (30), 110 (26), 95 (80), 85 (86), 84 (63), 55 (100) and 44 (63).
(2R,6S)-2-\{2-[(2S,6R)-6-Methoxy-3-oxo-3,6-dihydro-2H-pyran-2-yl]ethyl\}-6-methoxy-3,6-dihydro-2H-pyran-3-one 12

Boron trifluoride-diethyl ether ($3 \mu \mathrm{l}, 10 \mathrm{~mol} \%, 0.022 \mathrm{mmol}$) was added to a stirred solution of the dipyranone $14(57 \mathrm{mg}$, $0.224 \mathrm{mmol})$ and trimethyl orthoformate ($61 \mu \mathrm{l}, 0.56 \mathrm{mmol}$) in dichloromethane $(2 \mathrm{ml})$ at room temperature. The reaction mixture was stirred until TLC indicated the reaction to be complete, quenched with saturated aqueous sodium bicarbonate $(2 \mathrm{ml})$ and stirred for a further 10 min . The layers were separated and the aqueous layer was extracted with dichloromethane $(3 \times 2 \mathrm{ml})$, the combined organic was extracted, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the diacetal $\mathbf{1 2}$ which was purified by flash chromatography, eluting with $3: 7$ EtOAc-petrol to give the product ($62.4 \mathrm{mg},>98 \% ; 75: 25$ mixture of diastereoisomers) as fine colourless needles, mp 152.6$154.2{ }^{\circ} \mathrm{C}$ (from EtOAc-petrol); $R_{\mathrm{f}} 0.32$ (3:7 EtOAc-petrol) (Found: 305.0993; $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{6}$ requires $[M+\mathrm{Na}]$, 305.1001); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right.$ solution) 2936, 1694m ($\left.\mathrm{C}=\mathrm{O}\right), 1456,1393$, $1254,1192,1049 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.83(2 \mathrm{H}, \mathrm{dd}, J 10.2$ and $\left.0.9,5-\mathrm{H}^{\mathrm{min}}\right), 6.84\left(2 \mathrm{H}\right.$, dd, $J 10.2$ and $\left.3.4,5-\mathrm{H}^{\mathrm{maj}}\right), 6.14(2 \mathrm{H}$, dd, $J 10.3$ and $\left.1.6,4-\mathrm{H}^{\text {min }}\right), 6.09\left(2 \mathrm{H}, \mathrm{d}, J 10.2,4-\mathrm{H}^{\text {maj }}\right), 5.25$ $\left(2 \mathrm{H}, \mathrm{d}, J 0.9,6-\mathrm{H}^{\mathrm{min}}\right), 5.12\left(2 \mathrm{H}, \mathrm{d}, J 3.4,6-\mathrm{H}^{\mathrm{maj}}\right), 4.46(2 \mathrm{H}$, dd, $J 8.3$ and $\left.2.7,2-\mathrm{H}^{\text {maj }}\right), 4.10\left(2 \mathrm{H}\right.$, dd, $J 9.0$ and $\left.2.6,2-\mathrm{H}^{\mathrm{min}}\right)$, $3.59\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}{ }^{\text {min }}\right), 3.58\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}{ }^{\text {min }}\right), 3.53(3 \mathrm{H}, \mathrm{s}$, $\left.-\mathrm{OCH}_{3}{ }^{\text {maj }}\right), 3.52\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}{ }^{\text {maj }}\right), 2.30-2.18\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right)$ and 1.91-1.74 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 196.6$ $\left(3-C^{\text {maj }}\right), 196.4\left(3-C^{\text {min }}\right), 147.0\left(5-C^{\text {min }}\right), 143.7\left(5-C^{\text {maj }}\right), 129.0$ $\left(4-C^{\mathrm{min}}\right), 128.0\left(4-\mathrm{C}^{\mathrm{maj}}\right), 97.2\left(6-\mathrm{C}^{\mathrm{min}}\right), 94.4\left(6-\mathrm{C}^{\mathrm{maj}}\right), 79.3\left(\mathrm{C}^{\mathrm{maj}}\right)$, $79.2\left(\mathrm{C}^{\text {min }}\right)$, $74.2\left(\mathrm{C}^{\text {maj }}\right), 74.2\left(\mathrm{C}^{\text {min }}\right), 57.0\left(\mathrm{OCH}_{3}^{\text {maj }}\right), 56.9,57.0$ $\left(\mathrm{OCH}_{3}{ }^{\mathrm{min}}\right), 27.6\left(\mathrm{CH}_{2}{ }^{\text {min }}\right)$ and $27.4\left(\mathrm{CH}_{2}{ }^{\text {maj }}\right) ; m / z 251(3 \%), 219$ (5), 98 (100) and 83 (25); m/z 305 (ES) ($100 \%, \mathrm{MNa}^{+}$).

2-(2,5-Dimethoxy-2,5-dihydrofuran-2-yl)-6,8a-dimethoxy-2,3,4,4a,6,8a-hexahydropyrano[3,2-b]pyran 15

Boron trifluoride-diethyl ether ($20 \mu 1,0.162 \mathrm{mmol}$) was added to a stirred solution of the dipyranone $14(206 \mathrm{mg}, 0.811$ mmol), trimethyl orthoformate ($355 \mu \mathrm{l}, 3.244 \mathrm{mmol}$) and $3 \AA$ molecular seives $(0.2 \mathrm{~g})$ in methanol (2 ml) at room temperature. The solution was stirred for 72 h and then quenched with saturated aqueous sodium bicarbonate (2 ml). Excess methanol was removed under reduced pressure and the slurry diluted with water (4 ml) and extracted with chloroform $(4 \times 5 \mathrm{ml})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product which was purified by flash chromatography, eluting with $3: 7 \mathrm{EtOAc}$-petrol to give the pyrano[3,2-b]pyran 15 (263 mg , $>98 \%$; 50 : 50 mixture of diastereoisomers) as a colourless oil, $R_{\mathrm{f}} 0.35$ ($3: 7 \mathrm{EtOAc}$ petrol); $v_{\text {max }} / \mathrm{cm}^{-1}$ (CHCl_{3} solution) 2937, 1455, 1104, 1060 and $1019 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.07(1 \mathrm{H}, \mathrm{d}, J 10.4,3-\mathrm{H}), 6.02$ $\left(1 \mathrm{H}, \mathrm{dd}, J 10.4\right.$ and $\left.{ }^{4} J_{\mathrm{HH}} 1.4,3-\mathrm{H}\right), 6.00(1 \mathrm{H}$, unresolved, $4-\mathrm{H}$ furan), $6.00\left(1 \mathrm{H}, \mathrm{dd}, J 7.0\right.$ and ${ }^{4} J_{\mathrm{HH}} 1.2,3-\mathrm{H}$ furan), $5.84(1 \mathrm{H}$, dd, $J 5.9$ and ${ }^{4} J_{\mathrm{HH}} 1.2,3-\mathrm{H}$ furan), $5.72(1 \mathrm{H}$, dd, $J 10.4$ and $2.9,2-\mathrm{H}), 5.34\left(1 \mathrm{H}, \mathrm{dd}, J 2.3\right.$ and $^{4} J_{\mathrm{HH}} 1.2,5-\mathrm{H}$ furan), $5.41(1 \mathrm{H}$, m , unresolved, $5-\mathrm{H}$ furan), $4.84\left(1 \mathrm{H}, \mathrm{dd}, J 2.9\right.$ and ${ }^{4} J_{\mathrm{HH}} 1.5$, $1-\mathrm{H}), 3.85\left(1 \mathrm{H}, \mathrm{dd}, J 12.0\right.$ and $\left.2.8,8 \mathrm{~g}_{\mathrm{a}}-\mathrm{H}\right), 3.70(1 \mathrm{H}, \mathrm{dd}, J 12.3$ and $\left.4.3,8{ }_{\mathrm{a}}-\mathrm{H}\right), 3.75(1 \mathrm{H}$, dd, $J 12.0$ and $4.3,5-\mathrm{H}), 3.64(1 \mathrm{H}$, dd, $J 14.2$ and $2.4,5-\mathrm{H}), 3.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.43(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.20(3 \mathrm{H}$ $\left.\mathrm{s}, \mathrm{OCH}_{3}\right), 3.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.15(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 1.96-1.87\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.85-1.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right)$, 1.71-1.62 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}}\right)$ and 1.45-1.37 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}}\right)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 131.9$ (furan 3-C), 131.8 (furan 3-C), 131.3 (furan 4-C), 131.1 (furan 4-C), 131.1 (3-C), 130.9 (3-C), 129.2 (2-C), 129.1 (2-C), 113.8 (furan 2-C), 113.2 (furan 2-C), 107.4 (furan 5-C), 107.2 (furan 5-C), 95.9 (1-C), 95.9 (1-C), 91.8 ($4 \mathrm{a}-\mathrm{C}$), 91.6 ($4_{\mathrm{a}}-\mathrm{C}$), 74.4 (5-C), 72.9 ($8 \mathrm{a}-\mathrm{H}$), 70.5 (5-C), 70.5 $(8 \mathrm{a}-\mathrm{H}), 24.7(6-\mathrm{C}), 24.6(6-\mathrm{C}), 22.7(7-\mathrm{C})$ and $22.5(7-\mathrm{C})$; m / z (ES) $351.2\left(100 \%, \mathrm{MNa}^{+}\right)$.

(2R,3S,6S)-2-\{2-[(2S,3R,6R)-3-Hydroxy-6-methoxy-3,6-di-

 hydro-2H-pyran-2-yl]ethyl\}-6-methoxy-3,6-dihydro-2H-pyran-3-ol meso-13Sodium borohydride ($44 \mathrm{mg}, 1.17 \mathrm{mmol}$) was added portionwise to a stirred solution of the diketone $12(165 \mathrm{mg}, 0.585$ mmol) and cerium chloride heptahydrate ($480 \mathrm{mg}, 1.287 \mathrm{mmol}$) in ethanol $(10 \mathrm{ml})$ at $-40^{\circ} \mathrm{C}$. The reaction mixture was stirred for 26 h , quenched with water (1 ml) and evaporated under reduced pressure. The residue was extracted with chloroform $(5 \times 5 \mathrm{ml})$, the combined extracts dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product which was purified by flash chromatography, eluting with $1: 1$ EtOAcpetrol to give the $\operatorname{diol}(161 \mathrm{mg}, 96 \% ; 71: 29$ mixture of anomers) as a viscous colourless oil. On standing in chloroform for 4 days, the diol meso- 13 ($66 \mathrm{mg}, 41 \%,>98: 2$ mixture of anomers) was obtained as colourless prisms, $\mathrm{mp}>270{ }^{\circ} \mathrm{C}$ (decomp. $165{ }^{\circ} \mathrm{C}$); $R_{\mathrm{f}} 0.35$ ($60: 40 \mathrm{EtOAc}-$ petrol) (Found: 309.1328; $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{6}$ requires $[M+\mathrm{Na}]$, 309.1314); $v_{\text {max }} / \mathrm{cm}^{-1}$ $\left(\mathrm{CHCl}_{3}\right.$ solution) $3418(\mathrm{OH}), 2928,1447,1398,1127,1044 ;$ $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.93\left(2 \mathrm{H}\right.$, ddd, $J 10.1,2.7$ and ${ }^{4} J_{\mathrm{HH}} 1.3$, $4-\mathrm{H}), 5.77\left(2 \mathrm{H}\right.$, ddd, $J 10.1,2.7$ and $\left.{ }^{4} J_{\mathrm{HH}} 2.1,5-\mathrm{H}\right), 4.85(2 \mathrm{H}$, dd, $J 2.7$ and $\left.{ }^{4} J_{\mathrm{HH}} 1.3,6-\mathrm{H}\right), 3.94(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.61(2 \mathrm{H}$, ddd, J 8.2, 4.2 and $2.1,2-\mathrm{H}), 3.45\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.22(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.59\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right)$ and $1.55(2 \mathrm{H}$, broad, OH$)$; $\delta_{\mathrm{C}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 133.5$ (4-C), 126.6 ($5-\mathrm{C}$), 95.3 (6-C), 72.0 $(2-\mathrm{C}), 68.3(3-\mathrm{C}), 55.9\left(\mathrm{OCH}_{3}\right)$ and $28.2\left(\mathrm{CH}_{2}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{ES}) 309$ (100\%).

1,2-Di[pyran-2,5-dion-6-yl]ethane 18

Jones's reagent was prepared by slow addition of concentrated sulfuric acid ($2.2 \mathrm{ml}, 98 \%$) to chromium trioxide (2.67 g) on ice,
and the slurry was diluted to 20 ml by addition of water, added slowly and dropwise to a stirred suspension of dipyranone 14 $(163 \mathrm{mg})$ in acetone $(5 \mathrm{ml})$ at room temperature until the yellow colour persisted for a 2 min period. The solution was diluted with water (20 ml) and filtered, the residue was washed with distilled water (50 ml), ethanol (4 ml) and diethyl ether $(4 \mathrm{ml})$ to give the dione $\mathbf{1 8}$ ($158 \mathrm{mg},>98 \% ; 70: 30$ mixture of keto and enol tautomers) as a fine colourless powder, $\mathrm{mp}>300^{\circ} \mathrm{C}$ (Found: 273.0368; $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{6}$ requires $[M+\mathrm{Na}], 273.0375$); $v_{\max } / \mathrm{cm}^{-1}$ (Nujol mull) $1716(\mathrm{C}=\mathrm{O}), 1684(\mathrm{C}=\mathrm{O}), 1448,1282$, $1231,1120,1080$ and 1013; $\delta_{\mathrm{H}}\left(75 \mathrm{MHz}\right.$; DMSO- $\left.d_{6}\right) 8.88(2 \mathrm{H}$, br s, enol), 7.37 ($2 \mathrm{H}, \mathrm{d}, J 9.8$, enol), 7.03 ($2 \mathrm{H}, \mathrm{d}, J 10.2$, keto), $6.93(2 \mathrm{H}, \mathrm{d}, J 10.2$, keto $), 6.12(2 \mathrm{H}, \mathrm{d}, J 9.8$, enol), $5.20(2 \mathrm{H}$, dd, $J 3.3$ and 1.6 , keto), $2.75(4 \mathrm{H}, \mathrm{m}$, enol) and $2.00(4 \mathrm{H}, \mathrm{br} \mathrm{m}$, taut); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}\right.$ DMSO- d_{6}) 161.2, 147.2, 142.1, 136.0, 113.7 and 25.6 (keto resonances only indicated); m / z (ES) 273 (100\%).

1,2-Bis[3-Acetoxy-6-oxo-6H-pyran-2-yl]ethane 19

The dione $\mathbf{1 8}(20 \mathrm{mg}, 0.08 \mathrm{mmol})$ was dissolved in a mixture of acetic anhydride (2 ml) and pyridine $(1 \mathrm{ml})$ and stirred at room temperature under N_{2} for 24 h and the solvent was removed under reduced pressure. The residue was preabsorbed onto silica gel and purified by flash chromatography, eluting with 1: 1 EtOAc-petrol, to give $19(26.4 \mathrm{mg},>98 \%)$ as a semicrystalline solid, $R_{\mathrm{f}} 0.19$ ($1: 1$ EtOAc-petrol); $v_{\text {max }} / \mathrm{cm}^{-1}$ (thin film) 1771, 1727, 1652, 1428, 1370, 1102; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 7.12 (2H, d, J 9.9), 6.19 (2H, d, J 9.9), 2.29 ($6 \mathrm{H}, \mathrm{s}, \mathrm{OAc}$), 2.15 $\left(2 \mathrm{H}, \mathrm{dd}, J 12.5\right.$ and 3.4, $\left.\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right)$ and $2.07(2 \mathrm{H}$, dd, $J 12.5$ and 3.4, $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 169.5(\mathrm{C}=\mathrm{O}), 161.1(\mathrm{C}=\mathrm{O})$, 154.0, 142.0 (4-C), 132.0, $114.6(5-\mathrm{C}), 25.7\left(\mathrm{CH}_{3}\right)$ and 20.8 $\left(\mathrm{CH}_{2}\right)$.

(2R,6R)-2-\{2-[(2S,3R,6R)-3-Hydroxy-6-methoxy-3,6-dihydro-2H-pyran-2-yl]ethyl\}-6-methoxy-6H-pyran-3-one 29

$(+)$-Diethyl tartrate ($117 \mu \mathrm{l}, 0.684 \mathrm{mmol}$) and titanium tetraisopropoxide ($170 \mu \mathrm{l}, 0.570 \mathrm{mmol}$) were stirred under nitrogen at $-40^{\circ} \mathrm{C}$ in dichloromethane (2 ml) with $3 \AA$ molecular sieves $(0.5 \mathrm{~g})$. This solution was stirred for 40 min and the diol $\mathbf{1 3}$ ($163 \mathrm{mg}, 0.570 \mathrm{mmol} ; 75: 25$ mixture of diastereoisomers) was added dropwise as a solution in dichloromethane (1 ml). The solution was stirred for a further 30 min and tert-butyl hydroperoxide ($285 \mu \mathrm{l}$ of a 5 M solution in decane, 1.42 mmol) was added. After 48 hours at $-40^{\circ} \mathrm{C}$, the reaction mixture was quenched with water (2 ml) and filtered though Celite, eluting with dichloromethane. The aqueous layer was extracted with dichloromethane $(4 \times 5 \mathrm{ml})$ and the combined organic extracts dried $\left(\mathrm{MgSO}_{4}\right)$, evaporated under reduced pressure, preabsorbed on silica gel and purified by flash chromatography (gradient elution: $1: 1 \rightarrow 7: 3$ ethyl acetate-petrol) to give the enone 29 ($23 \mathrm{mg}, 14 \%$; >98: 2 mixture of diastereoisomers) as colourless prisms, $[a]_{\mathrm{D}}=+28.4\left(c=0.38, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.22(1: 1$ EtOAc-petrol); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right.$ solution) 1699, 1456, 1099, $1049 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.85(1 \mathrm{H}, \mathrm{dd}, J 10.2$ and $3.5,5-\mathrm{H})$, $6.09(1 \mathrm{H}, \mathrm{d}, J 10.2,4-\mathrm{H}), 5.94\left(1 \mathrm{H}, \mathrm{d}, J 10.1,4-\mathrm{H}^{\prime}\right), 5.76(1 \mathrm{H}$, dd, $J 10.1$ and $\left.4.6,3-\mathrm{H}^{\prime}\right), 5.58\left(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}^{\prime}\right), 5.12(1 \mathrm{H}, \mathrm{d}, J 3.5$, $6-\mathrm{H}), 4.85\left(1 \mathrm{H}\right.$, broad, $\left.5-\mathrm{H}^{\prime}\right), 4.47\left(1 \mathrm{H}\right.$, dd, $J 8.3$ and $\left.3.6,2-\mathrm{H}^{\prime}\right)$, $4.22(1 \mathrm{H}, \mathrm{dd}, J 5.6$ and $3.7,2-\mathrm{H}), 3.54\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.45$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.19(1 \mathrm{H}$, broad, OH$)$ and $1.80-1.50(4 \mathrm{H}, \mathrm{m}$, CH_{2}); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 196.8$ (3-C), $143.7(5-\mathrm{C}), 133.9$ (4-C), 128.1 ($4-\mathrm{C}^{\prime}$), 127.0 (3-C'), 95.6 ($5-\mathrm{C}^{\prime}$), 94.5 ($6-\mathrm{C}$), 74.4 , 72.3, 68.6, $57.0\left(\mathrm{OCH}_{3}\right), 56.4\left(\mathrm{OCH}_{3}\right), 28.0\left(\mathrm{CH}_{2}\right)$ and 26.3 $\left(\mathrm{CH}_{2}\right) ; m / z(\mathrm{EI}) 284$ (3\%), 267 (14), 253 (32), 237 (27), 100 (100), 98 (52), 85 (28), 71 (35) and 55 (31); m / z (ES) 307 (100%, MNa^{+}). The alcohol 38 was shown to have $>95 \%$ ee by conversion into the corresponding (R)-Mosher's ester.

Also obtained was 22 ($122 \mathrm{mg}, 75 \%$; 87: 13 mixture of diastereoisomers) which was recrystallised from chloroform to give the diol 22 ($94 \mathrm{mg}, 67 \%$; >98:2 mixture of diastereomers)
as colourless prisms, spectroscopically identical to that obtained previously.

4-Methoxybenzoic acid ($2 R, 3 S, 6 S$)-2-\{2-[(2S,3R,6R)-6-methoxy-3-(4-methoxybenzoyloxy)-3,6-dihydro-2H-pyran-2-yl]ethyl $\}$-6-methoxy-3,6-dihydro-2H-pyran-3-yl ester 20

p-Anisoyl chloride ($211 \mu \mathrm{l}, 1.553 \mathrm{mmol}$) was added to a stirred solution of the diol meso- $\mathbf{1 3}$ ($202 \mathrm{mg}, 0.706 \mathrm{mmol}$) and triethylamine ($354 \mu \mathrm{l}, 2.542 \mathrm{mmol}$) at room temperature in dichloromethane (2.4 ml). The reaction mixture was treated with 4(N, N-dimethylamino)pyridine ($35 \mathrm{mg}, 0.035 \mathrm{mmol}$) and stirred for 3 hours, quenched with saturated aqueous sodium bicarbonate (3 ml) and diluted with chloroform $(10 \mathrm{ml})$. The organic layer was separated and washed with saturated aqueous sodium bicarbonate $(2 \times 4 \mathrm{ml})$, brine $(2 \times 4 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product which was pre-absorbed onto silica gel and purified by flash chromatography (gradient elution: $2: 8 \rightarrow 3: 7 \mathrm{EtOAc}$-petrol) to give the diester 20 ($386 \mathrm{mg},>98 \%$) as colourless plates, mp $169.2-170.6^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.28$ ($3: 7 \mathrm{EtOAc}-\mathrm{petrol}$) (Found: 577.2053; $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{10}$ requires $[M+\mathrm{Na}]$, 577.2050$)$; $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right.$ solution) 2931, 1713, 1699, 1511, 1463, 1256 and 1168; $\delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.97$ (4 H , dd, $J 6.9$ and ${ }^{5} J_{\mathrm{HH}} 2.1, \mathrm{Ar}$), 6.91 $\left(4 \mathrm{H}, \mathrm{dd}, J 6.9\right.$ and $\left.{ }^{5} J_{\mathrm{HH}} 2.1, \mathrm{Ar}\right), 5.95$ (2 H , ddd, $J 10.2,1.7$, $\left.{ }^{4} J_{\mathrm{HH}} 1.1,4-\mathrm{H}\right), 5.82\left(2 \mathrm{H}\right.$, ddd, $J 10.2$ and $\left.2.6,{ }^{4} J_{\mathrm{HH}} 2.0,5-\mathrm{H}\right)$, 5.34 (2 H , ddd, $J 9.3,5.5$, and $1.7,4-\mathrm{H}), 4.87(2 \mathrm{H}$, dd, $J 2.2$ and $\left.{ }^{4} J_{\mathrm{HH}} 1.1,6-\mathrm{H}\right), 3.99(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.87\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.37(6 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{3}\right), 2.07-2.04\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.59\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 166.1,164.0,132.2,130.5,128.0,122.6$, 114.0, 95.7 (6-C), 70.0, 69.4, $56.3\left(\mathrm{Ar} \mathrm{OCH}_{3}\right), 55.8$ (pyranone $\left.\mathrm{OCH}_{3}\right)$ and $28.5\left(\mathrm{CH}_{2}\right) ; m / z(\mathrm{ES}) 577\left(100 \%, \mathrm{MNa}^{+}\right)$.

Methanesulfonic acid ($2 R, 3 S, 6 S$)-2-\{2-[(2S,3R,6R)-6-methoxy-3-methylsulfonyloxy-3,6-dihydro-2H-pyran-2-yl]ethyl\}-6-methoxy-3,6-dihydro-2H-pyran-3-yl ester
Methanesulfonyl chloride ($78 \mu \mathrm{l}, 1.008 \mathrm{mmol}$) was added to a stirred solution of the diol meso- $\mathbf{1 3}(71 \mathrm{mg}, 0.252 \mathrm{mmol})$ and triethylamine ($142 \mu \mathrm{l}, 1.021 \mathrm{mmol}$) in dichloromethane (2 ml) at room temperature. The reaction mixture was stirred for 17 h , diluted with dichloromethane $(15 \mathrm{ml})$, and the organic layer was washed with saturated aqueous sodium bicarbonate solution ($2 \times 5 \mathrm{ml}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the dimesylate ($108 \mathrm{mg}, 98 \%$) as an amorphous pale yellow solid; mp $112.2-114.3{ }^{\circ} \mathrm{C} ; v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right.$ solution) 2976, 1639, 1457, 1401, 1367, 1351, 1181, 1130, 1097 and $1045 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.02(2 \mathrm{H}, \mathrm{d}, J 10.2,5-\mathrm{H}), 5.89$ (2 H, ddd, $J 10.2,2.5$ and ${ }^{4} J_{\mathrm{HH}} 1.4,4-\mathrm{H}$), $4.95(2 \mathrm{H}$, dd, $J 8.8$ and $2.5,3-\mathrm{H}), 4.89(2 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 3.89(2 \mathrm{H}, \mathrm{td}, J 8.8$ and $2.1,2-\mathrm{H})$, $3.46\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.07\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 2.19\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right)$ and $1.57\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b}\right)$.
($2 R, 3 R, 6 S$)-2-\{2-[(2S,3S,6R)-3-Hydroxy-6-methoxy-3,6-di-hydro-2H-pyran-2-yl]ethyl $\}$-6-methoxy-3,6-dihydro-2H-pyran-3-ol 23

Potassium superoxide ($96 \mathrm{mg}, 1.36 \mathrm{mmol}$) and 18-crown-6 (3.6 $\mathrm{mg}, 13.6 \mu \mathrm{~mol})$ was added to a stirred solution of methanesulfonic acid $(2 R, 3 S, 6 S)-2-\{2-[(2 S, 3 R, 6 R)-6-m e t h o x y-3-m e t h y l-$ sulfonyloxy-3,6-dihydro-2H-pyran-2-yl]ethyl $\}$-6-methoxy-3,6-dihydro- $2 H$-pyran-3-yl ester ($60 \mathrm{mg}, 0.136 \mathrm{mmol}$) in dry DMSO at room temperature. The reaction mixture was stirred for 4 days, quenched by slow addition of water $(0.5 \mathrm{ml})$, diluted with water (10 ml) and extracted with chloroform ($4 \times 10 \mathrm{ml}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product which pre-absorbed on to silica gel and was purified by flash chromatography, eluting with $8: 2$ EtOAc-petrol to give the diol 23 $(13.8 \mathrm{mg}, 36 \%)$ as colourless prisms, $\mathrm{mp} 178.7-180.4^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.19$ (7:3 EtOAc-petrol) (Found: 309.1309; $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{6}$ requires $[M+$

Na , 309.1314); $v_{\text {max }} / \mathrm{cm}^{-1}$ (thin film) $3431(\mathrm{O}-\mathrm{H}), 2899,1446$, $1404,1183,1112,1080,1022 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.19(2 \mathrm{H}$, dd, $J 10.0$ and $5.6,4-\mathrm{H}), 5.90(2 \mathrm{H}, \mathrm{dd}, J 10.0$ and $3.0,5-\mathrm{H}), 4.89$ $(2 \mathrm{H}, \mathrm{d}, J 3.0,6-\mathrm{H}), 3.98(2 \mathrm{H}, \mathrm{m}$, broad, $3-\mathrm{H}), 3.70(2 \mathrm{H}, \mathrm{m}$, br, $2-\mathrm{H}), 3.45\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.26\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right)$ and $1.91-1.83$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 130.6(4-\mathrm{C}), 128.6(5-\mathrm{C})$, $95.7(6-\mathrm{C}), 77.4,71.0,63.4\left(\mathrm{OCH}_{3}\right)$ and $27.0\left(\mathrm{CH}_{2}\right) ; ~ m / z(\mathrm{ES})$ $309(\mathrm{M}+\mathrm{Na})$.

Acetic acid ($2 R, 3 R, 6 S$)-2-\{2-[(2S,3S,6R)-3-acetoxy-6-methoxy-3,6-dihydro-2H-pyran-2-yl]ethyl\}-6-methoxy-3,6-dihydro-2H-pyran-3-yl ester 21
Anhydrous caesium acetate ($147 \mathrm{mg}, 0.77 \mathrm{mmol}$) and $4-(\mathrm{N}, \mathrm{N}-$ dimethylamino) pyridine ($4.7 \mathrm{mg}, 38.5 \mu \mathrm{~mol}$) were added to a stirred solution of methanesulfonic acid $(2 R, 3 S, 6 S)-2-\{2-$ [($2 S, 3 R, 6 R$)-6-methoxy-3-methylsulfonyloxy-3,6-dihydro- $2 H$ -pyran-2-yl]ethyl\}-6-methoxy-3,6-dihydro-2 H -pyran-3-yl ester $(33.9 \mathrm{mg}, 77 \mu \mathrm{~mol})$ in dry toluene (3.5 ml). The reaction mixture was refluxed for 3 days, cooled to room temperature and filtered. The residue was extracted with toluene ($2 \times 10 \mathrm{ml}$) and the combined organic extracts were washed with water (5 ml), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product which was pre-absorbed on to silica gel and purified by flash chromatography, eluting with $3: 7 \mathrm{EtOAc}-$ petrol to give the diacetate $21(23.8 \mathrm{mg}, 84 \%)$ as colourless plates, mp 189.1-190.2 ${ }^{\circ} \mathrm{C}$ (from EtOAc-petrol); $R_{\mathrm{f}} 0.22$ (7:3 EtOAc-petrol); (Found MNa^{+}393.1525. $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NaO}_{8}$ requires $M N a, 393.1534) ; v_{\max } / \mathrm{cm}^{-1}$ (thin film) 2922, 1727, 1372, 1249 , 1182, 1071, 1045 and 1020; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.09(2 \mathrm{H}$, dd, $J 10.1$ and $5.2,4-\mathrm{H}), 6.02(2 \mathrm{H}$, dd, $J 10.1$ and $2.8,5-\mathrm{H}), 4.96$ $(2 \mathrm{H}, \mathrm{d}, J 2.8,6-\mathrm{H}), 4.94(2 \mathrm{H}, \mathrm{dd}, J 5.2$ and $2.6,3-\mathrm{H}), 4.09(2 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{H}), 3.43\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.10(6 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$ and $1.83-1.65$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 171.0(\mathrm{C}=\mathrm{O}), 130.8(4-\mathrm{C})$, 126.3 (5-C), 95.6 (6-C), 69.1, 64.8, 56.0, 27.1 and 21.3; m/z 339 (28\%), 279 (46), 219 (33), 142 (63) and 137 (49); m/z (ES) 393 $\left(100 \%, \mathrm{MNa}^{+}\right)$.

4-Methoxybenzoic acid ($2 R, 3 R, 6 S$)-2-\{2-[(2S,3S,6R)-6-

 methoxy-3-(4-methoxybenzoyloxy)-3,6-dihydro-2H-pyran-2-yl]ethyl\}-6-methoxy-3,6-dihydro-2H-pyran-3-yl ester 22By the same general method, methanesulfonic acid $(2 R, 3 S, 6 S)$ -2-\{2-[(2S,3R,6R)-6-methoxy-3-methylsulfonyloxy-3,6-dihydro2 H -pyran-2-yl]ethyl\}-6-methoxy-3,6-dihydro- 2 H -pyran-3-yl ester ($67 \mathrm{mg}, 152 \mu \mathrm{~mol}$), anhydrous caesium p-methoxybenzoate ($400 \mathrm{mg}, 1.52 \mathrm{mmol}$) and 4 -(N, N-dimethylamino)pyridine ($8.5 \mathrm{mg}, 76 \mu \mathrm{~mol}$) gave a crude product which was preabsorbed onto silica gel and purified by flash chromatography, eluting with $3: 7 \mathrm{EtOAc}$-petrol to give the diester $22(45.2 \mathrm{mg}$, 54%) as colourless needles; $\mathrm{mp} 142.9-143.7^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.27$ (3:7 EtOAc-petrol) (Found: 577.2070; $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{10}$ requires [$M+$ Na , 577.2050); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CH}_{3} \mathrm{Cl}\right.$ solution) 2934, 1713, 1693, 1465 and 1256; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.00(4 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{Ar})$, 6.91 (4H, d, $J 8.8$, Ar), 6.19 ($2 \mathrm{H}, \mathrm{dd}, J 10.0$ and $5.4,4-\mathrm{H}$), 6.01 ($2 \mathrm{H}, \mathrm{dd}, J 10.0$ and $3.0,5-\mathrm{H}$), 5.13 ($2 \mathrm{H}, \mathrm{dd}, J 5.3$ and $2.1,3-\mathrm{H}$), $4.92(2 \mathrm{H}, \mathrm{d}, J 3.0,6-\mathrm{H}), 4.12(2 \mathrm{H}, \mathrm{dt}, J 7.3$ and $2.1,2-\mathrm{H}), 3.87$ $\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.32\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$ and 1.97-1.73 (4H, m, CH 2); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 166.3(\mathrm{Ar}), 163.9(\mathrm{Ar}), 132.2(\mathrm{Ar}), 130.8$ (Ar), 126.6, 122.6, 114.0, 95.6 (6-C), 69.5, 65.1, 55.9 and 27.4 $\left(\mathrm{CH}_{2}\right) ; m / z(\mathrm{ES}) 577(\mathrm{M}+\mathrm{Na})$.
(2R,3R,6S)-2-\{2-[(2S,3S,6R)-3-Hydroxy-6-methoxy-3,6-dihydro-2 H -pyran-2-yl]ethyl $\}$-6-methoxy-3,6-dihydro-2H-pyran-3-ol 23
Anhydrous potassium carbonate ($50 \mathrm{mg}, 362 \mu \mathrm{~mol}$) was added to a stirred solution of the diacetate $21(24 \mathrm{mg}, 64.9 \mu \mathrm{~mol})$ in methanol $(2 \mathrm{ml})$ at room temperature. The reaction mixture was stirred for 6 h , evaporated under reduced pressure and the residue dissolved in chloroform ($4 \times 5 \mathrm{ml}$). The organic
fractions were combined, washed with brine (5 ml), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the diol 23 ($16.1 \mathrm{mg}, 89 \%$), spectroscopically identical to that obtained previously.

($2 R, 3 R, 6 S$)-2-\{2-[(2S,3S,6R)-6-Methoxy-3-tert-butyldimethyl-silyloxy-3,6-dihydro-2H-pyran-2-yl]ethyl\}-6-methoxy-3,6-dihydro-2H-pyran-3-yl tert-butyldimethylsilyl ether 24

Imidazole ($31 \mathrm{mg}, 454 \mu \mathrm{~mol}$) and tert-butyldimethylsilyl chloride ($51 \mathrm{mg}, 340 \mu \mathrm{~mol}$) were added to a stirred solution of the diol $23(16 \mathrm{mg}, 56.7 \mu \mathrm{~mol})$ in dry dimethylformamide $(0.5 \mathrm{ml})$. The reaction mixture was stirred for 27 h at room temperature, diluted with chloroform (10 ml), washed with saturated aqueous sodium bicarbonate solution (4 ml) and water $(5 \times 5 \mathrm{ml})$, and the organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product, which was pre-absorbed onto silica gel and purified by flash chromatography, eluting with $15: 85 \mathrm{EtOAc}$-petrol to give the disilyl ether 24 ($23.1 \mathrm{mg}, 80 \%$) as a colourless flocculent amorphous solid; mp $105.7-106.1^{\circ} \mathrm{C}$; $R_{\mathrm{f}} 0.52$ ($15: 85$ EtOAcpetrol); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.95(2 \mathrm{H}$, dd, $J 10.0$ and 5.1 , $4-\mathrm{H}), 5.78(2 \mathrm{H}, \mathrm{dd}, J 10.0$ and $2.9,5-\mathrm{H}), 4.84(2 \mathrm{H}, \mathrm{d}, J 2.9$, $6-\mathrm{H}), 3.82$, $(2 \mathrm{H}, \mathrm{m}$, broad, $2-\mathrm{H}), 3.67$ ($2 \mathrm{H}, \mathrm{dd}, J 5.1$ and 2.8 , $3-\mathrm{H}), 3.34\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 1.75\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 0.81(18 \mathrm{H}, \mathrm{s}$, t-butyl) and $0.00\left(12 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right)$.

2-(Furan-2-yl)-6-hydroxy-6H-pyran-3-one 25

m-Chloroperbenzoic acid ($900 \mathrm{mg}, 57-86 \%$) was added slowly in small portions to a stirred solution of alcohol $\mathbf{8}(521 \mathrm{mg}, 3.18$ mmol) in dichloromethane $(20 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 5 h , quenched with saturated aqueous sodium thiosulfate solution $(10 \mathrm{ml})$ and the layers separated. The aqueous layer was extracted with dichloromethane $(3 \times 20 \mathrm{ml})$ and the combined organic layers were washed with aqueous sodium bicarbonate (10 ml). This aqueous layer was extracted with dichloromethane $(3 \times 20 \mathrm{ml})$ and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product which was purified by flash chromatography, eluting with 3:7 EtOAc-petrol to give the pyranone $\mathbf{2 5}$ ($272 \mathrm{mg}, 48 \% ; 75: 25$ mixture of anomers) as brown prisms, $\mathrm{mp} 48.1-50.8{ }^{\circ} \mathrm{C}$ (from EtOAc-petrol); $R_{\mathrm{f}} 0.28$ (3:7 EtOAcpetrol); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right.$ solution) $3401(\mathrm{O}-\mathrm{H}), 1699(\mathrm{C}=\mathrm{O})$, 1152, 1027 and $1017 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.45(1 \mathrm{H}, \mathrm{dd}, J 1.8$ and ${ }^{4} J_{\mathrm{HH}} 0.7$, furyl $\left.5-\mathrm{H}^{\text {maj }}\right), 7.44\left(1 \mathrm{H}, \mathrm{dd}, J 1.9\right.$ and ${ }^{4} J_{\mathrm{HH}} 0.7$, furyl $\left.5-\mathrm{H}^{\text {min }}\right), 7.03\left(1 \mathrm{H}, \mathrm{dd}, J 10.4\right.$ and $\left.2.3,5-\mathrm{H}^{\text {min }}\right), 6.99(1 \mathrm{H}$ dd, $J 11.9$ and $\left.3.0,5-\mathrm{H}^{\text {maj }}\right), 6.45\left(1 \mathrm{H}\right.$, dd, $J 3.3$ and ${ }^{4} J_{\mathrm{HH}} 0.7$, furyl $\left.3-\mathrm{H}^{\text {min }}\right), 6.44\left(1 \mathrm{H}, \mathrm{dd}, J 3.3\right.$ and ${ }^{4} J_{\mathrm{HH}} 0.7$, furyl $\left.3-\mathrm{H}^{\text {maj }}\right)$, $6.39\left(1 \mathrm{H}\right.$, dd, $J 3.3$ and $\left.1.8,4-\mathrm{H}_{\text {fury }}{ }^{\text {maj }}\right), 6.38(1 \mathrm{H}, \mathrm{dd}, J 3.3$ and $1.9,4-\mathrm{H}$ fury $\left.1^{\mathrm{min}}\right), 6.31\left(1 \mathrm{H}\right.$, dd, $J 10.4$ and $\left.{ }^{4} J_{\mathrm{HH}} 1.4,4-\mathrm{H}^{\text {min }}\right)$, $6.25\left(1 \mathrm{H}, \mathrm{dd}, J 11.9\right.$ and $\left.^{4} J_{\mathrm{HH}} 0.9,4-\mathrm{H}^{\mathrm{maj}}\right), 5.74(1 \mathrm{H}, \mathrm{dd}, J 2.8$ and $\left.{ }^{4} J_{\mathrm{HH}} 1.1,6-\mathrm{H}\right), 5.65(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $3.3(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ $\delta_{\mathrm{C}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 191.8\left(3-\mathrm{C}^{\text {maj }}\right), 191.3\left(3-\mathrm{C}^{\mathrm{min}}\right), 149.2$ (furyl $2-\mathrm{C}^{\text {min }}$), 148.2 (furyl $2-\mathrm{C}^{\text {maj }}$), 147.1 ($5-\mathrm{C}^{\mathrm{min}}$), 145.4 ($5-\mathrm{C}^{\text {maj }}$), 143.6 (furyl $5-\mathrm{C}^{\text {maj }}$), 143.4 (furyl $5-\mathrm{C}^{\text {min }}$), $128.3\left(4-\mathrm{C}^{\text {min }}\right.$), 128.0 $\left(4-\mathrm{C}^{\mathrm{maj}}\right), 110.8$ (furyl $3-\mathrm{C}^{\mathrm{maj}}$), $110.8\left(3-\mathrm{C}^{\text {min }}\right), 110.7$ (furyl 4$\left.\mathrm{C}^{\text {min }}\right), 110.5$ (furyl 4-C $\left.{ }^{\text {maj }}\right), 89.8\left(6-\mathrm{C}^{\text {min }}\right), 88.3\left(6-\mathrm{C}^{\text {maj }}\right.$) and 71.3 (2-C); m / z (EI) $180\left(8 \%, \mathrm{M}^{+}\right), 149$ (40), 95 (47), 81 (59), 69 (61) and 55 (100).

Toluene-4-sulfonic acid 2-furan-2-ylpyridin-3-yl ester 27

By the same general method, m-chloroperbenzoic acid (988 mg , $57-86 \%)$ and the sulfonamide $10(521 \mathrm{mg}, 2.00 \mathrm{mmol})$ gave a crude product after 6 h . Analysis of the crude reaction mixture by $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR revealed a $47: 53$ mixture of the pyridine 27 and the piperidine 26. The crude mixture was purified by flash chromatography, eluting with 3:7 EtOAc-petrol to give the pyridine 27 ($144 \mathrm{mg}, 29 \%$) as light brown prisms, mp 71.2 $73.4{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.31$ (3:7 EtOAc-petrol) (Found: 316.0642;
$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{4} \mathrm{~S}$ requires $\left.[M+H], 316.0643\right)$; $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right.$ solution) 1435, 1377, 1195, 1174 and 1093; $\delta_{\mathrm{H}}(500 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 8.52\left(1 \mathrm{H}, \mathrm{dd}, J 4.6\right.$ and $\left.{ }^{4} J_{\mathrm{HH}} 1.4, \operatorname{pyr} 6-\mathrm{H}\right), 7.71(1 \mathrm{H}, \mathrm{dd}$, $J 8.3$ and ${ }^{4} J_{\mathrm{HH}} 1.4$, pyr $4-\mathrm{H}$), $7.59(2 \mathrm{H}, \mathrm{d}, J 8.4,2-\mathrm{H}$ and $6-\mathrm{H})$, $7.47\left(1 \mathrm{H}\right.$, dd, $J 1.7$ and ${ }^{4} J_{\mathrm{HH}} 0.6$, furyl $\left.5-\mathrm{H}\right), 7.19(1 \mathrm{H}$, dd, $J 8.3$ and 4.6, pyr $5-\mathrm{H}), 7.18$ ($2 \mathrm{H}, \mathrm{d}, J 8.4,3-\mathrm{H}$ and $5-\mathrm{H}$), $7.04(1 \mathrm{H}$, dd, $J 3.4$ and ${ }^{4} J_{\mathrm{HH}} 0.6$, furyl $\left.3-\mathrm{H}\right), 6.45(1 \mathrm{H}$, dd, $J 3.4$ and 1.7 , furyl 4-H) and $2.37(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 148.6$ (furyl 2-C), 147.7 (pyr 6-C), 145.9 (pyr, 2-C), 143.8 (furyl 5-C), 131.9, 130.7 (pyr, 4-C), 129.5 (3-C and 5-C), 128.5 ($2-\mathrm{C}$ and 6-C), 127.9 (pyr, 3-C), 126.4 (4-C), 122.3 (pyr, 5-C), 113.8 (furyl $3-\mathrm{C}$), 111.8 (furyl, 4-C), and 21.6 (Me); m / z (EI) $315\left(28 \%, \mathrm{M}^{+}\right.$), 160 (61), 132 (100) and 39 (62).

2-(Furan-2-yl)-6-hydroxy-6H-pyran-3-one 25

N-Bromosuccinimide ($727 \mathrm{mg}, 4.08 \mathrm{mmol}$) was added slowly in small portions over 2 hours to a mixture of the alcohol $\mathbf{8}$ ($515 \mathrm{mg}, 3.14 \mathrm{mmol}$) in THF (10 ml) and sodium acetate trihydrate ($512 \mathrm{mg}, 3.77 \mathrm{mmol}$) in water $(2.5 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 3 h , poured into dichloromethane (30 ml), the layers separated and the organic layer was washed with 10% aqueous potassium iodide solution (10 ml), 15% aqueous sodium thiosulfate solution (10 ml) and 10% aqueous sodium bicarbonate solution (10 ml). The combined aqueous washings were evaporated under reduced pressure and the solid residue was extracted with dichloromethane ($3 \times$ $10 \mathrm{ml})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product which was purified by flash chromatography, eluting with $3: 7$ EtOAc-petrol to give the pyranone 25 ($243 \mathrm{mg}, 43 \% ; 73: 27$ mixture of anomers) as a brown crystalline solid, spectroscopically identical to that obtained previously.

2-Furan-2-yl-6-hydroxy-1-(4-tolylsulfonyl)-1,6-dihydro-2H-pyridin-3-one 26

By the same general method, N-bromosuccinimide (1.424 g , $4.00 \mathrm{mmol})$, the sulfonamide $\mathbf{1 0}(1.268 \mathrm{~g}, 4.00 \mathrm{mmol})$ and sodium acetate trihydrate $(652.8 \mathrm{mg}, 4.80 \mathrm{mmol})$ gave the piperidine 26 ($659 \mathrm{mg}, 50 \%$) as a brown oil, $R_{\mathrm{f}} 0.25$ (3:7 EtOAc-petrol) (Found: 316.0641; $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}_{4} \mathrm{~S}$ requires [$M-$ $\mathrm{OH}], 316.0644) ; v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right.$ solution) 1597, 1492, 1439 and 1378; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.64\left(2 \mathrm{H}\right.$, dd, $J 8.5$ and ${ }^{5} J_{\mathrm{HH}}$ 0.6 , aryl, $2-\mathrm{H}$ and $6-\mathrm{H}), 7.28\left(2 \mathrm{H}, \mathrm{dd}, J 8.5\right.$ and ${ }^{5} J_{\mathrm{HH}} 0.6$, aryl, $3-\mathrm{H}$ and $5-\mathrm{H})$, $7.18\left(1 \mathrm{H}\right.$, dd, $J 1.7$ and ${ }^{4} J_{\mathrm{HH}} 0.6$, furyl $\left.5-\mathrm{H}\right)$, $7.02(1 \mathrm{H}, \mathrm{dd}, J 10.4$ and 4.6 , pip, $5-\mathrm{H}), 6.32(1 \mathrm{H}, \mathrm{dd}, J 3.3$ and ${ }^{4} J_{\mathrm{HH}} 0.6$, furyl $\left.3-\mathrm{H}\right), 6.22(1 \mathrm{H}$, dd, $J 3.3$ and 1.7 , furyl $4-\mathrm{H}), 6.19$ $\left(1 \mathrm{H}, \mathrm{dd}, J 10.4\right.$ and $\left.^{4} J_{\mathrm{HH}} 1.2,4-\mathrm{H}\right), 6.07\left(1 \mathrm{H}, \mathrm{dd}, J 4.6\right.$ and ${ }^{4} J_{\mathrm{HH}}$ $1.2,6-\mathrm{H}), 5.61(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $2.36(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; m / z(\mathrm{EI}) 333$ $\left(8 \%, \mathrm{M}^{+}\right), 331$ (51), 91 (100).

4-Methoxybenzoic acid $(2 R, 3 S, 4 R, 5 S, 6 S)-2-\left\{2^{\prime}-\left[\left(2 S^{\prime}, 6 R^{\prime}\right)-3^{\prime}-\right.\right.$ (4-methoxylbenzoyloxy)-6'-methoxy-3', 6^{\prime}-dihydro- $2 H$-pyran- $\mathbf{2}^{\prime}$ yl]ethyl $\}$-4,5-dihydroxy-6-methoxytetrahydropyran-3-yl ester ent-32a

A solution of the diamine $37(74 \mathrm{mg}, 0.155 \mathrm{mmol})$ in dry dichloromethane (0.5 ml) was added to a stirred solution of osmium tetroxide ($40 \mathrm{mg}, 0.155 \mathrm{mmol}$) in dichloromethane $(1.5 \mathrm{ml})$. The yellow solution was cooled to $-20^{\circ} \mathrm{C}$, the diester $20(86 \mathrm{mg}, 0.155 \mathrm{mmol})$ added in one portion and the reaction mixture was stirred for 5 h , warmed to room temperature, stirred for 2 days and evaporated under reduced pressure. The residue was dissolved in 1:1 saturated aqueous sodium sulfite solution-tetrahydrofuran (2 ml), refluxed for 2 h and evaporated under reduced pressure to give a crude product, which was pre-absorbed on to silica gel and purification by flash chromatography, eluting with $55: 45 \mathrm{EtOAc}$: petrol, gave the diol ent-32a ($76.9 \mathrm{mg}, 84 \%$) as a viscous colourless oil, $[a]_{\mathrm{D}}^{20}=$ $-27.6\left(c=0.48, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.23$ ($6: 4 \mathrm{EtOAc}$-petrol); (Found
MNa^{+}611.2104. $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{12}$ requires $\left.M N a, 611.2114\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ 3415 (O-H), 2932, 1713, 1606, 1512, 1454, 1258, 1168, 1102 and 1045; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.92$ ($\left.2 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{Ar}\right), 7.89$ ($2 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{Ar}$), $6.85(2 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{Ar}), 6.84$ ($2 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{Ar}$), $5.87\left(1 \mathrm{H}, \mathrm{d}, J 10.2,5-\mathrm{H}^{\prime}\right), 5.73\left(1 \mathrm{H}\right.$, ddd, $J 10.2,4.6$ and ${ }^{4} J_{\mathrm{HH}}$ $\left.2.4,4-\mathrm{H}^{\prime}\right), 5.23\left(1 \mathrm{H}, \mathrm{dd}, J 9.4\right.$ and $\left.1.4,3-\mathrm{H}^{\prime}\right), 4.95(1 \mathrm{H}, \mathrm{t}, J 9.5$, $3-\mathrm{H}), 4.75\left(1 \mathrm{H}, \mathrm{d}, J 2.1,6-\mathrm{H}^{\prime}\right), 4.67(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 3.91(2 \mathrm{H}, \mathrm{td}$, $J 9.6$ and $3.0,2-\mathrm{H}$ and $\left.2-\mathrm{H}^{\prime}\right), 3.84(1 \mathrm{H}$, dd, $J 9.5$ and $3.3,4-\mathrm{H})$, $3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.78(1 \mathrm{H}, \mathrm{d}, J 3.3,5-\mathrm{H})$, $3.38(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 3.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.75$ $(1 \mathrm{H}, \mathrm{br}, \mathrm{OH})$ and $1.90-1.30\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 167.9 (Ar), 166.2 (Ar), 164.2 (Ar), 164.0 (Ar), 132.4 (Ar), 132.2 (Ar), 130.5 ($4-\mathrm{C}^{\prime}$), 127.9 ($5-\mathrm{C}^{\prime}$), 122.5 (Ar), 122.0 (Ar), 114.1 (Ar), 114.1 (Ar), 100.5 (6-C), 95.7 (6-C'), 75.4 (3-C), 71.0 (2-C), 70.9 (2-C'), 69.8, (4-C), $69.7(5-\mathrm{C}), 69.3$ (3-C'), $56.3\left(\mathrm{OCH}_{3}\right)$, $55.9\left(\mathrm{OCH}_{3}\right)$, $55.9\left(\mathrm{OCH}_{3}\right), 55.5\left(\mathrm{OCH}_{3}\right), 28.4\left(\mathrm{CH}_{2}\right)$ and 28.0 $\left(\mathrm{CH}_{2}\right) ; m / z(\mathrm{ES}) 611\left(100 \%, \mathrm{MNa}^{+}\right)$.
$(2 R, 3 S, 4 S, 5 S, 6 S)-2-\left\{2^{\prime}-\left[\left(2 S^{\prime}, 3 S^{\prime}, 6 R^{\prime}\right)-3^{\prime}\right.\right.$-Acetoxy-6'-methoxy$3^{\prime}, 6^{\prime}$-dihydro- $2 H$-pyran- $\mathbf{2}^{\prime}$-yllethyl $\}$-6-methoxytetrahydropyran-3,4,5-triyl triacetate 40
By the same general method, the diamine 37 (33.9 mg , $0.071 \mathrm{mmol})$, and the diol $32(20 \mathrm{mg}, 0.071 \mathrm{mmol})$ gave a crude product which was dissolved in a mixture of acetic anhydride $(2 \mathrm{ml})$ and pyridine (1 ml), stirred for 5 h at room temperature, and evaporated under reduced pressure to give a crude product which was pre-absorbed onto silica gel and purified by flash chromatography, eluting with 3:7 EtOAc-petrol, to give the tetraacetate $\mathbf{4 0}(13.2 \mathrm{mg}, 39 \%)$ as a viscous colourless oil, $[a]_{\mathrm{D}}^{20}=$ $+90.9\left(c=0.033, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.31$ ($3: 7 \mathrm{EtOAc}$-petrol); (Found: 511.1768; $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{12}$ requires $[M+N a]$, 511.1791); $v_{\text {max }} / \mathrm{cm}^{-1}$ (thin film) 2960, 2924, 2853, 1742 (C=O), 1678, 1455, 1373, 1259,$1083 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.08(1 \mathrm{H}$, ddd, $J 10.0,5.5$ and $\left.{ }^{4} J_{\mathrm{HH}} 1.0,4-\mathrm{H}^{\prime}\right), 6.00\left(1 \mathrm{H}\right.$, ddd, $J 10.0,3.0$ and $\left.{ }^{4} J_{\mathrm{HH}} 0.4,5-\mathrm{H}^{\prime}\right)$, $5.27(1 \mathrm{H}, \mathrm{t}, J 3.8,4-\mathrm{H}), 5.21(1 \mathrm{H}, \mathrm{dd}, J 3.8$ and $1.2,3-\mathrm{H}), 5.10$ $(1 \mathrm{H}, \mathrm{dt}, J 3.8$ and $1.2,5-\mathrm{H}), 4.91\left(1 \mathrm{H}, \mathrm{d}, J 3.0,6-\mathrm{H}^{\prime}\right), 4.76(1 \mathrm{H}$, d, $J 1.2,6-\mathrm{H}), 4.02\left(1 \mathrm{H}, \mathrm{td}, J 9.3\right.$ and $\left.2.6,2-\mathrm{H}^{\prime}\right), 3.97(1 \mathrm{H}$, ddd, $J 9.3,3.8$ and $\left.{ }^{4} J_{\mathrm{HH}} 1.0,2-\mathrm{H}\right), 3.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.39(3 \mathrm{H}, \mathrm{s}$, OCH_{3}), $2.14(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.14(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.08(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$, $1.99(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$ and $1.77-1.68\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 170.6(\mathrm{C}=\mathrm{O}), 170.4(\mathrm{C}=\mathrm{O}), 170.1(\mathrm{C}=\mathrm{O})$, $169.6(\mathrm{C}=\mathrm{O})$, 130.4 ($5-\mathrm{C}^{\prime}$), 125.9 ($4-\mathrm{C}^{\prime}$), 99.4 ($6-\mathrm{C}$), 95.2 ($\left.6-\mathrm{C}^{\prime}\right), 64.5$ (3-C'), 68.8 (2-C'), 68.8 (2-C), 68.3 (3-C), 67.5 ($5-\mathrm{C}$), 66.0 ($4-\mathrm{C}$), 55.7 $\left(\mathrm{OCH}_{3}\right), 55.2\left(\mathrm{OCH}_{3}\right), 27.1\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right), 21.0(\mathrm{OAc}), 20.8$ (OAc), 20.7 (OAc) and $20.6(\mathrm{OAc}) ; m / z(\mathrm{ES}) 511(\mathrm{M}+\mathrm{Na})$.

($2 S, 3 S, 4 S, 5 R, 6 R)$-2-Methoxy-6-\{2-[($2 R, 3 R, 4 S, 5 S, 6 S)$-3,4,5-triacetoxy-6-methox-tetrahydropyran-2-yl]ethyl\}tetrahydro-pyran-3,4,5-triyl triacetate 39

By the same general method, the diamine 37 ($57 \mathrm{mg}, 0.119$ mmol), osmium tetraoxide ($31 \mathrm{mg}, 0.119 \mathrm{mmol}$), the diol meso$13(34 \mathrm{mg}, 0.119 \mathrm{mmol})$, acetic anhydride (2 ml) and pyridine $(1 \mathrm{ml})$ gave a crude product which was pre-absorbed onto silica gel and purified by flash chromatography, eluting with $3: 7$ EtOAc-petrol, to give the hexaacetate $39(28.8 \mathrm{mg}, 40 \%)$ as colourless prisms, $R_{\mathrm{f}} 0.23$ (3 : 7 EtOAc-petrol); (Found: 629.2075; $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{16}$ requires $[M+\mathrm{Na}]$, 629.2065); $v_{\text {max }} / \mathrm{cm}^{-1}$ 2925, 1750 (C=O), 1679, 1447, 1370, 1247, 1224, 1134, 1084, $1050 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.28(2 \mathrm{H}, \mathrm{dd}, J 10.0$ and $3.5,4-\mathrm{H}$ and $\left.4-\mathrm{H}^{\prime}\right), 5.23\left(2 \mathrm{H}, \mathrm{dd}, J 3.5\right.$, and $1.7,3-\mathrm{H}$ and $\left.5-\mathrm{H}^{\prime}\right), 5.10$, $\left(2 \mathrm{H}, \mathrm{t}, J 10.0,5-\mathrm{H}\right.$ and $\left.3-\mathrm{H}^{\prime}\right), 4.64(2 \mathrm{H}, \mathrm{d}, J 0.5,2-\mathrm{H}$ and $\left.6-\mathrm{H}^{\prime}\right), 3.72\left(2 \mathrm{H}, \mathrm{t}, J 8.9,6-\mathrm{H}\right.$ and $\left.2-\mathrm{H}^{\prime}\right), 3.37\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $2.14(6 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.04(6 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 1.98(6 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 1.86$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$ and $1.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 98.4$ ($2-\mathrm{C}$ and $6-\mathrm{C}^{\prime}$), 69.9 ($6-\mathrm{C}$ and $2-\mathrm{C}^{\prime}$), 69.8 ($3-\mathrm{C}$ and $5-\mathrm{C}^{\prime}$), 69.6 ($5-\mathrm{C}$ and $3-\mathrm{C}^{\prime}$), $69.2\left(4-\mathrm{C}\right.$ and $\left.4-\mathrm{C}^{\prime}\right), 55.1\left(\mathrm{OCH}_{3}\right), 27.1\left(\mathrm{CH}_{2}\right)$, 20.9 (OAc), 20.8 (OAc) and 20.7 (OAc); $m / z(\mathrm{ES}) 629(\mathrm{M}+$ Na).

Also obtained was the diacetate $\mathbf{3 8}$ ($19.8 \mathrm{mg}, 45 \%$).

Kinetic resolution of the allylic alcohol 48

By the same general methods, the diamine 37 ($244 \mathrm{mg}, 0.513$ mmol), osmium tetraoxide ($130 \mathrm{mg}, 0.513 \mathrm{mmol}$), the allylic alcohol ${ }^{26} 48(136.3 \mathrm{mg}, 0.733 \mathrm{mmol})$, acetic anhydride (2 ml) and pyridine (1 ml) gave a crude product which was purified by flash chromatography, eluting with $15: 85 \mathrm{EtOAc}$: petrol, to give the triacetate ${ }^{26} \mathbf{5 0}(24 \%)$ as a colourless oil, $[a]_{\mathrm{D}}=-25.0$ $\left[c=0.12, \mathrm{CHCl}_{3}\right]$.

4-Methoxybenzoic acid ($2 R, 3 R, 4 R, 5 S, 6 S$)-4,5-diacetoxy-2-\{2[($\left.2 S^{\prime}, 6 R^{\prime}\right)-3^{\prime}$-(4-methoxybenzoyl)-6'-methoxy- $\mathbf{3}^{\prime}, 6^{\prime}$-dihydro$\mathbf{2 H}$-pyran- $\mathbf{2}^{\prime}$-yllethyl\}-6-methoxytetrahydropyran-3-yl ester 47

The diol ent-32a ($57 \mathrm{mg}, 0.097 \mathrm{mmol}$) was dissolved in a mixture of acetic anhydride (2 ml) and pyridine $(1 \mathrm{ml})$ and stirred at room temperature for 5 h . The reaction mixture was evaporated under reduced pressure to give a crude product which was preabsorbed onto silica gel and purified by flash chromatography, eluting with $3: 7 \mathrm{EtOAc}$-petrol, to give the diacetate 47 (64.4 $\mathrm{mg},>98 \%)$ as a colourless oil, $[a]_{\mathrm{D}}^{20}=-25.9\left(c=0.54, \mathrm{CHCl}_{3}\right)$; $R_{\mathrm{f}} 0.35$ (3:7 EtOAc-petrol); $v_{\text {max }} / \mathrm{cm}^{-1} 2924,2853,2360,2342$, $1753(\mathrm{C}=\mathrm{O}), 1721(\mathrm{C}=\mathrm{O}), 1606,1512$ and $1259 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.95(2 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{Ar}), 7.92(2 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{Ar}), 6.92(2 \mathrm{H}$, d, $J 8.9$, Ar), 6.90 ($2 \mathrm{H}, \mathrm{d}, J 8.9$, Ar), 5.93 (1H, d, $\left.J 10.2,5-\mathrm{H}^{\prime}\right)$, $5.80\left(1 \mathrm{H}, \mathrm{dt}, J 10.2\right.$ and $\left.2.5,4-\mathrm{H}^{\prime}\right), 5.48,(1 \mathrm{H}, \mathrm{dd}, J 10.1$ and 3.5 , $4-\mathrm{H}), 5.33(1 \mathrm{H}, \mathrm{t}, J 10.1,3-\mathrm{H}), 5.27(1 \mathrm{H}, \mathrm{dd}, J 9.4$ and 2.5 , $\left.3-\mathrm{H}^{\prime}\right), 5.27\left(1 \mathrm{H}, \mathrm{dd}, J 3.5\right.$ and $\left.1.5,5-\mathrm{H}^{\prime}\right), 4.81\left(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}^{\prime}\right), 4.65$ $(1 \mathrm{H}, \mathrm{d}, J 1.5,6-\mathrm{C}), 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.36$ $(1 \mathrm{H}, \mathrm{d}, J 3.3,5-\mathrm{H}), 3.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.88(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.15$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$ and $1.75-1.40\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 132.2 (Ar), 130.5 (4-C'), 127.9 (5-C'), 114.2 (Ar), 114.1 (Ar), 98.8 (6-C), 95.7 (6-C'), 70.9 (2-C'), 70.5 (2-C), 70.4 (4-C), 70.0 (3-C), $69.5(5-C), 69.3$ (3-C'), 56.2, 55.9, 55.2, 28.4 and 28.0.

The diacetate was found to have 60% ee by analytical chiral HPLC (Chiracel OD column; column oven $24^{\circ} \mathrm{C}$; monitoring at $\lambda_{\text {max }} 204 \mathrm{~nm}$; gradient elution: $98: 2 \longrightarrow 70: 30$ hexane : isopropanol over 30 min), retention times 24.3 min (minor enantiomer) and 25.8 min (major enantiomer).

4-Methoxybenzoic acid $(2 R, 3 R, 4 S, 5 R, 6 S)-4,5$-dihydroxy-2-\{2-[(2S,3S,6R)-3-(4-methoxybenzoyl)-6-methoxy-3,6-dihydro-2H-pyran-2-yl]ethyl\}-6-methoxytetrahydropyran-3-yl ester 32a

Potassium ferricyanide ($25.0 \mathrm{mg}, 76 \mu \mathrm{~mol}$), potassium carbonate ($10.5 \mathrm{mg}, 76 \mu \mathrm{~mol}$), methanesulfonamide ($3.6 \mathrm{mg}, 38 \mu \mathrm{~mol}$) and potassium osmate dihydrate $(0.4 \mathrm{mg}, 1 \mu \mathrm{~mol})$ were stirred at room temperature in a $1: 1$ mixture of water-tert-butanol (2-methylpropan-2-ol). A solution of the ligand $36(1.3 \mathrm{mg}, 2$ $\mu \mathrm{mol})$ in tert-butanol ($100 \mu \mathrm{l}$) was added, the reaction mixture was stirred for 10 min , cooled to $0^{\circ} \mathrm{C}$ and the diester $22(21 \mathrm{mg}$, $38 \mu \mathrm{~mol})$ added. The reaction mixture was stirred for 5 days, quenched with sodium sulfite (200 mg), stirred for 30 min at room temperature and evaporated under reduced pressure. The residue was extracted with $\mathrm{EtOAc}(4 \times 5 \mathrm{ml})$, and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a crude residue which was preabsorbed onto silica gel, and purified by flash chromatography (gradient elution: $4: 6 \rightarrow 7: 3$ EtOAc-petrol) to give the diester 32a ($4 \mathrm{mg}, 16 \% ; 75: 25$ 32a : 32b), as a colourless viscous syrup, $[a]_{\mathrm{D}}=+25.8\left(c=0.093, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.11(6: 4 \mathrm{EtOAc}-$ petrol $)$ (Found: 611.2109; $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{12}$ requires $[M+\mathrm{Na}]$, 611.2104); $v_{\text {max }} / \mathrm{cm}^{-1}$ (thin film) 3385 (broad), 2925, 1711 (C=O), 1606, $1443,1259,1099$ and 1044; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.93(2 \mathrm{H}, \mathrm{d}$, $J 9.0, \mathrm{Ar}), 7.89$ ($2 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{Ar}$), 6.87 ($2 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{Ar}$), 6.84 ($2 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{Ar}$), 6.09 ($1 \mathrm{H}, \mathrm{ddd}, J 10.0,5.5,{ }^{4} J_{\mathrm{HH}} 1.0,4-\mathrm{H}^{\prime}$), $5.93\left(1 \mathrm{H}, \mathrm{dd}, J 10.0\right.$ and $\left.2.8,5-\mathrm{H}^{\prime}\right), 5.37(1 \mathrm{H}, \mathrm{d}, J 3.4,3-\mathrm{H}), 5.03$ (1 H , dd, $J 5.5$ and $2.3,3-\mathrm{H}^{\prime}$), $4.83\left(1 \mathrm{H}, \mathrm{d}, J 2.8,6-\mathrm{H}^{\prime}\right), 4.71(1 \mathrm{H}$, d, $J 1.4,6-\mathrm{H}), 3.99\left(1 \mathrm{H}, \mathrm{dt}, J 9.3\right.$ and $\left.2.3,2-\mathrm{H}^{\prime}\right), 3.94(1 \mathrm{H}$, dd, $J_{\mathrm{HH}} 3.7$ and $\left.J_{\mathrm{OH}} 8.9,4-\mathrm{H}\right), 3.83(1 \mathrm{H}$, ddd, $J 9.4,3.4$ and 2.3 , $2-\mathrm{H}), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.68(1 \mathrm{H}$, ddd,
$J_{\mathrm{HH}} 3.7,1.4$ and $\left.J_{\mathrm{OH}} 9.2,5-\mathrm{H}\right), 3.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.21(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 2.57\left(1 \mathrm{H}, \mathrm{d}, J_{\text {OH }} 8.9, \mathrm{OH}\right), 2.30\left(1 \mathrm{H}, \mathrm{d}, J_{\text {OH }} 9.2, \mathrm{OH}\right)$ and $1.85-1.54\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$ (data for 32a only); m / z (ES) 611 $(\mathrm{M}+\mathrm{Na})$.

Also obtained was unreacted starting material (15.3 mg , 72%).

(R)- α-Methoxy- α-(trifluoromethyl)phenylacetic acid ($2 S, 3 R, 6 R$)-2-\{2-[(2R,6R)-3-oxo-6-methoxy-3,6-dihydro-2H-pyran-2-yl]ethyl\}-6-methoxy-6 \boldsymbol{H}-pyran-3-yl ester 30

(S)-(+)- α-Methoxy- α-(trifluoromethyl)phenylacetyl chloride ($6.7 \mu \mathrm{l}, 0.036 \mathrm{mmol}$) was added to a stirred solution of the enone 29 ($9 \mathrm{mg}, 0.032 \mathrm{mmol}$) in pyridine (4 drops) and carbon tetrachloride (6 drops). The reaction mixture was stirred at room temperature for 36 hours, diluted with chloroform $(3 \mathrm{ml})$ and washed with saturated aqueous sodium bicarbonate solution ($2 \times 0.5 \mathrm{ml}$), 5% aqueous cupric sulfate solution $(3 \times 1 \mathrm{ml})$ and brine $(1 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product which was preabsorbed on silica gel and purified by flash chromatography, eluting with 3:7EtOAc-petrol, to give the ester $\mathbf{3 0}(15.9 \mathrm{mg}$, $>98 \%$) as colourless needles, $R_{\mathrm{f}} 0.35$ (3:7 EtOAc-petrol); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.50-7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.75(1 \mathrm{H}, \mathrm{dd}$, $J 10.3$ and $3.5,5-\mathrm{H}), 5.99\left(1 \mathrm{H}, \mathrm{dd}, J 10.3\right.$ and $\left.{ }^{4} J_{\mathrm{HH}} 0.5,4-\mathrm{H}\right)$, $5.82\left(1 \mathrm{H}, \mathrm{d}, J 10.1\right.$ and $\left.2.5,4-\mathrm{H}^{\prime}\right), 5.85\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}^{\prime}\right), 5.22$ ($1 \mathrm{H}, \mathrm{td}, J 9.4$ and $\left.1.5,2-\mathrm{H}^{\prime}\right), 4.99(1 \mathrm{H}, \mathrm{d}, J 3.5, \mathrm{H}-6), 4.82$ $\left(1 \mathrm{H}\right.$, broad, $\left.5-\mathrm{H}^{\prime}\right), 4.27(1 \mathrm{H}, \mathrm{dd}, J 8.5$ and $3.6,2-\mathrm{H}), 3.85(1 \mathrm{H}$, td, $J 9.5$ and $\left.2.5,1-\mathrm{H}^{\prime}\right), 3.47\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.37\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.36\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$ and $1.70-1.40\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 143.6,130.1,129.3,128.9,128.6,128.0,127.6,95.6$, $94.5,74.3,72.2,68.5,56.7,56.5,55.8,31.3,27.8$ and 25.8 .
($2 R, 3 S, 4 S, 5 R, 6 S)-2-\left\{2^{\prime}-\left[\left(2 S^{\prime}, 6 R^{\prime}\right)-3^{\prime}-(4-M e t h o x y b e n z o y l)-6^{\prime}-\right.\right.$ methoxy-3', $\mathbf{6}^{\prime}$-dihydro-2H-pyran-2'-yl]ethyl\}-3-(4-methoxy-benzoyloxy)-6-methoxytetrahydropyran-4, 5 -diyl bis $[(S)-\alpha-$ methoxy- α-(trifluoromethyl)phenylacetate] 44
By the same general method, the diol ent-32a ($16.2 \mathrm{mg}, 27.6$ $\mu \mathrm{mol}$) and (R)-(-)- α-methoxy- α-(trifluoromethyl)phenylacetyl chloride ($70 \mu \mathrm{l}, 374 \mu \mathrm{~mol}$) gave a crude product which was preabsorped onto silica gel and purified by flash chromatography, eluting with $2: 8$ EtOAc-petrol, to give the tetraester 44 (26.4 $\mathrm{mg}, 96 \% ; 80: 2044: 45$). Purification by preparative HPLC (gradient elution: 100:0 $\rightarrow 98: 2$ hexane-isopropanol (propan-$2-\mathrm{ol}$) over 40 min) monitoring at $\lambda_{\text {max }} 250 \mathrm{~nm}$, gave the tetraester 44 ($18.4 \mathrm{mg}, 65 \%$) as a viscous colourless oil, retention time $33.7 \mathrm{~min} ;[a]_{\mathrm{D}}^{20}=-91.8\left(c=0.22, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.28(2: 8 \mathrm{EtOAc}-$ petrol); $v_{\max } / \mathrm{cm}^{-1} 2964,2926,2849,1760(\mathrm{C}=\mathrm{O}), 1720(\mathrm{C}=\mathrm{O})$, $1606,1260,1168,1079,1451 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.98(2 \mathrm{H}$, d, $J 9.0, \mathrm{Ar}), 7.87(2 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{Ar}), 7.52(2 \mathrm{H}, \mathrm{d}, J 7.2, \mathrm{Ar})$, $7.35-7.13(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.01(2 \mathrm{H}, \mathrm{t}, J 7.7, \mathrm{Ar}), 6.92$ ($2 \mathrm{H}, \mathrm{d}, J 9.0$, Ar), $6.92(2 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{Ar}), 5.93\left(1 \mathrm{H}, \mathrm{d}, J 10.0,5-\mathrm{H}^{\prime}\right), 5.90$ $(1 \mathrm{H}, \mathrm{dd}, J 10.2$ and $3.0,4-\mathrm{H}), 5.79(1 \mathrm{H}, \mathrm{dt}, J 10.0$ and 1.9 , $\left.4-\mathrm{H}^{\prime}\right), 5.48(1 \mathrm{H}, \mathrm{dd}, J 3.0$ and $3.0,5-\mathrm{H}), 5.28(1 \mathrm{H}, \mathrm{t}, J 10.2$, $3-\mathrm{H}), 5.25\left(1 \mathrm{H}, \mathrm{dd}, J 10.1\right.$ and $\left.1.9,3-\mathrm{H}^{\prime}\right), 4.79(1 \mathrm{H}, \mathrm{d}, J 1.5$, $6-\mathrm{H}), 4.78\left(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}^{\prime}\right), 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.87(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.86\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}\right.$ and $\left.2-\mathrm{H}^{\prime}\right), 3.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.41$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.05-$ $1.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$ and $1.55-1.35\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$.

Also obtained was the tetraester $45(4.8 \mathrm{mg}, 17 \%)$ as a viscous colourless oil, retention time $30.8 \mathrm{~min} ;[a]_{\mathrm{D}}^{20}=+31.4(c=$ $0.22, \mathrm{CHCl}_{3}$); $R_{\mathrm{f}} 0.28$ ($2: 8 \mathrm{EtOAc}-$ petrol); $v_{\text {max }} / \mathrm{cm}^{-1} 2964$, 2926, $2849,1760(\mathrm{C}=\mathrm{O}), 1720(\mathrm{C}=\mathrm{O}), 1606,1260,1168,1079$, $1451 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.98(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{Ar}), 7.92(2 \mathrm{H}$, d, $J 9.0, \mathrm{Ar}), 7.44-7.12(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.93(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{Ar})$, $6.91(2 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{Ar}), 5.93\left(1 \mathrm{H}, \mathrm{d}, J 10.2,5-\mathrm{H}^{\prime}\right), 5.86(1 \mathrm{H}, \mathrm{dd}$, $J 10.1$, and $2.6,4-\mathrm{H}), 5.78\left(1 \mathrm{H}, \mathrm{dt}, J 10.2\right.$ and $\left.1.6,4-\mathrm{H}^{\prime}\right), 5.38$ $(1 \mathrm{H}, \mathrm{d}, J 2.6,5-\mathrm{H}), 5.36(1 \mathrm{H}, \mathrm{t}, J 10.1,3-\mathrm{H}), 5.21(1 \mathrm{H}, \mathrm{dd}, J 9.2$ and $\left.1.6,3-\mathrm{H}^{\prime}\right), 4.80(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 4.61\left(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}^{\prime}\right), 3.88(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.86\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}\right.$ and $\left.2-\mathrm{H}^{\prime}\right), 3.38$
$\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.27\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.05-$ $1.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$ and $1.55-1.35\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$.

(2R,3S,4S,5R,6S)-2-Butyl-6-methoxy-3-(4-methoxybenzoyloxy)-tetrahydropyran-4,5-diyl bis[(R)- α-methoxy- α-(trifluoromethyl)phenylacetate] 42

By the same general method, the diol ${ }^{26} 41(13.5 \mathrm{mg}, 38.1 \mu \mathrm{~mol})$ and (S)-(-)-MPTA acid chloride ($50 \mu \mathrm{l}, 267 \mu \mathrm{~mol}$) gave a crude product which was pre-absorbed onto silica gel and purified by flash chromatography, eluting with $1: 9$ EtOAc-petrol, to give the triester $42(25.2 \mathrm{mg}, 84 \%)$ as a colourless oil, $[\alpha]_{\mathrm{D}}=+35.2$ ($c=0.073, \mathrm{CHCl}_{3}$); $R_{\mathrm{f}} 0.30(1: 9 \mathrm{EtOAc}-$ petrol $) ; v_{\text {max }} / \mathrm{cm}^{-1} 2957$, $2849,1760,1726,1607,1261,1168,1105,1080,1027 ; \delta_{\mathrm{H}}(300$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.96 (2H, d, J 9.0, Ar), 7.45-7.14 (10H, m, Ar), $6.93(2 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{Ar}), 5.85(1 \mathrm{H}, \mathrm{dd}, J 10.1$ and $3.0,4-\mathrm{H}), 5.39$ (1 H, dd, $J 3.0$ and $1.9,5-\mathrm{H}$), $5.38(1 \mathrm{H}, \mathrm{t}, J 10.1,3-\mathrm{H}), 4.65(1 \mathrm{H}$, d, $J 1.9,6-\mathrm{H}), 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.33(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{3}\right), 3.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 1.57-1.14\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, and 0.84 ($3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{3}$); m/z (ES) $809\left(100 \%, \mathrm{MNa}^{+}\right) ; m / z(\mathrm{EI}) 755$ (6\%), 493 (12), 369 (41), 189 (94), 135 (100).

($2 R, 3 S, 4 S, 5 R, 6 S$)-2-Butyl-6-methoxy-3-(4-methoxybenzoyl-oxy)tetrahydropyran-4,5-diyl bis[(S)- α-methoxy- α-(trifluoromethyl)phenylacetate] 43

By the same general method, the diol ${ }^{26} 41(23.8 \mathrm{mg}, 67.2 \mu \mathrm{~mol})$ and (R)-(-)-MPTA acid chloride ($70 \mu \mathrm{l}, 374 \mu \mathrm{~mol}$) gave a crude product which was preabsorbed onto silica gel and purified by flash chromatography, eluting with 1:9 EtOAc-petrol gave the triester $43(46 \mathrm{mg}, 87 \%)$ as a colourless oil, $[a]_{\mathrm{D}}=-38.2(c=$ $\left.0.545, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.30\left(1: 9 \mathrm{EtOAc}\right.$-petrol); $v_{\text {max }} / \mathrm{cm}^{-1} 2958$, 2848, 1760, 1728, 1606, 1260, 1168, 1105 and 1080; $\delta_{\mathrm{H}}(300$ MHz; CDCl_{3}) 7.89 (2H, d, J 8.9, Ar), 7.55 (2H, d, J 7.4, Ar), 7.43-6.93 ($8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 6.91 ($2 \mathrm{H}, \mathrm{d}, J 8.9$ Ar), 5.88 ($1 \mathrm{H}, \mathrm{dd}$, $J 10.0$ and $3.1,4-\mathrm{H}), 5.49(1 \mathrm{H}, \mathrm{dd}, J 3.1$ and $1.8,5-\mathrm{H}), 5.32(1 \mathrm{H}$, $\mathrm{t}, J 10.0,3-\mathrm{H}), 4.85(1 \mathrm{H}, \mathrm{d}, J 1.8,6-\mathrm{H}), 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.50$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 1.45-$ $1.37\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.35-1.24\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$ and $0.85(3 \mathrm{H}, \mathrm{t}$, $J 7.1, \mathrm{CH}_{3}$); m/z (ES) 809 ($100 \%, \mathrm{MNa}^{+}$); m / z (EI) 755 (5\%), 493 (10), 369 (37), 189 (97), 135 (100).

Acknowledgements

We thank EPSRC and Aventis for funds provided under the CASE award scheme for new appointees, the Royal Society for a research grant, and Pfizer and AstraZeneca for strategic research funding.

References

1 M. C. Willis, J. Chem. Soc., Perkin Trans. 1, 1999, 1765.
2 (a) R. Noyori, M. Tokunaga and M. Kitamura, Bull. Chem. Soc. Jpn., 1995, 68, 36; (b) R. S. Ward, Tetrahedron: Asymmetry, 1995, 6, 1475.

3 For example, see: (a) I. Bruce, G. W. J. Fleet, I. C. di Bello and B. Winchester, Tetrahedron, 1992, 48, 10191; (b) M. K. Tong, E. M. Blumenthal and B. Ganem, Tetrahedron Lett., 1990, 31, 1683; (c) B. P. Bashyal, H.-F. Chow and G. W. J. Fleet, Tetrahedron Lett., 1986, 27, 3205.
4 (a) A. D. Campbell, D. E. Paterson, R. J. K. Taylor and T. M. Raynham, Chem. Commun., 1999, 1599; (b) B. J. Dorgan and R. F. W. Jackson, Synlett, 1996, 859

5 R. W. J. Chubb, M. R. Bryce and B. Tarbit, J. Chem. Soc., Perkin Trans. 1, 2001, 1853.
6 B. E. Love, P. S. Raje and T. C. Williams II, Synlett, 1994, 493.
7 M. Harding and A. Nelson, Chem. Commun., 2001, 695.
8 S. F. Martin and P. W. Zinke, J. Am. Chem. Soc., 1989, 111, 2311.
9 J.-L. Luche, J. Am. Chem. Soc., 1978, 100, 2226.
10 C. Poss and S. L. Schreiber, Acc. Chem. Res., 1994, $27,9$.
11 For example, see: M. Loegers, L. E. Overman and G. S. Welmaker, J. Am. Chem. Soc., 1995, 117, 9139.

12 J. A. Harris and G. A. O'Doherty, Org. Lett., 2000, 2, 2983.
13 J. W. Huffman and R. C. Desai, Synth. Commun., 1983, 13, 553.

14 J. San Filippo Jnr., C. I. Chern and J. S. Valentine, J. Org. Chem., 1975, 40, 1678.
15 G. Höfle, W. Steglich and H. Vorbrüggen, Angew. Chem., Int. Ed. Engl., 1978, 17, 569.
16 T. Kametani, M. Tsubuki, Y. Tatsuzaki and T. Honda, J. Chem. Soc., Perkin Trans. 1, 1990, 639
17 W.-S. Zhou, Z.-H. Lu and Z.-M. Wang, Tetrahedron, 1993, 49, 2641
18 S. L. Schreiber, M. T. Goulet and G. Schulte, J. Am. Chem. Soc., 1987, 109, 4718.
19 See T. Katsuki and V. S. Martin, Organic Reactions, ed. L. A. Paquette, Wiley, New York, 1996, vol. 48, pp. 1-299.
20 (a) V. S. Martin, S. S. Woodard, T. Katsuki, Y. Yamada, M. Ikeda and K. B. Sharpless, J. Am. Chem. Soc., 1981, 103, 6237; (b) S. M. Brown, S. G. Davies and J. A. A. de Sousa, Tetrahedron: Asymmetry, 1991, 2, 511; (c) K. Mori and P. Puapoomchareon, Justus Liebigs Ann. Chem., 1991, 1053.
21 J. A. Marshall and K. E. Flynn, J. Am. Chem. Soc., 1982, 104, 7430.
22 H. C. Kolb, M. S. VanNieuwenhze and K. B. Sharpless, Chem. Rev., 1994, 94, 2483.

23 E. J. Corey, M. C. Noe and A. Guzman-Perez, J. Am. Chem. Soc., 1995, 117, 10817.
24 E. J. Corey, P. D. Jardine, S. Virgil, P.-W. Yuen and R. D. Connell, J. Am. Chem. Soc., 1989, 111, 9243.

25 Preliminary communication: R. Hodgson, T. Mahid and A. Nelson, Chem. Commun., 2001, 2076.
26 R. Hodgson, T. Mahid and A. Nelson, J. Chem. Soc., Perkin Trans. 1,2002 in the press, DOI: $10.1039 / \mathrm{b} 202890 \mathrm{e}$.
27 (a) F. M. Hauser, S. R. Ellenberger, J. C. Clardy and L. S. Bass, J. Am. Chem. Soc., 1984, 106, 2458; (b) S. B. King and B. Ganem, J. Am. Chem. Soc., 1991, 113, 5089.

28 T. J. Donohoe, P. R. Moore, M. J. Waring and N. J. Newcombe, Tetrahedron Lett., 1997, 38, 5027.
29 J. A. Dale, D. L. Dull and H. S. Mosher, J. Org. Chem., 1969, 34, 2543.

30 J. K. Cha, W. J. Christ and Y. Kishi, Tetrahedron, 1984, 40, 2247.
31 Y.-D. Wu, Y. Wang and K. N. Houk, J. Org. Chem., 1992, 57, 1362.

32 G. I. Lotto and E. J. Corey, Tetrahedron Lett., 1990, 31, 2665.

[^0]: \dagger In contrast, a classical resolution or kinetic resolution can only give up to a 50% yield of enantiomerically pure product. The efficiency of a dynamic kinetic resolution ${ }^{2}$ can, however, approach that of a perfect enantioselective desymmetrisation reaction.

[^1]: \ddagger Previous studies have shown substituted cyclohexen-2-ols to be only poor or moderate substrates in Sharpless kinetic resolution reactions. ${ }^{20}$

